
Shmoocon 2011 Crypto Challenge Pack

Dcoder

1 Introduction
2011 brings us a new cryptographic challenge pack by andrewl [1]. This time around, the
source code of all the 5 + 1 problems is given (Python), which speeds up the process and
lowers the entry barrier. The difficulty of the problems ranges from easy to very hard.
So let’s begin at the beginning!

2 Warming up
The first challenge, warmup.py, presents us with an interesting problem. Given a 10-
character (either truncated or padded) user name and a serial, 10 strings are “rotated”
until the first character of each rotated string is equal to each character of the user name.

Let’s take a closer look at the rotation:

def rol_string(s, amount):
width = len(s)
rotating len(s) is identity op, so reduce the work
amount = amount % width
for i in range(amount):

s = s[1:width] + s[0]
return(s)

It becomes obvious that the rotation operation is cyclic, i.e., that there is a finite
amount of possible rotation amounts that result in different strings. Indeed, the challenge
itself reduces this amount modulo the number of different possible strings, len(s).

Back to the challenge. Now we we know that the serial is the amount of rotation
needed for each serial modulo the length of each “rotor” string. There is one trivial
solution: as long as each rotation amount is lower than the minimum string’s length, we
can just use that. But the challenge prevents that:

if name == check and serial > 139 and serial < 421336842070675358939:
print "good"

else:
print "bad"

Thus, we need to solve a modular system of equations to obtain the desired serial.
First, let’s formally define the problem. Let c0, . . . , c9 be the characters of the user name,
l0, . . . , l9 and L be the lengths of each rotor string and their product and r0, . . . , r9 the

1

rotation amounts required. Each one of these arrays is trivial to find. The problem is to
find the value S such that

S mod li = ri, i ∈ {0, 1, . . . , 9}.
The solution to this problem is extremely well known and usually named Chinese

remainder theorem (CRT) [9, §8.1]. Using the above notation, our solution is given by

S =

(
10∑
i=0

riviLi

)
mod L,

where Li and vi are the precomputed constants L/li and L−1
i mod li. To generate

valid serials, we can use the following SAGE [20] code:

sage: name = "Dcoder"
sage: if len(name) > 10:
....: name = name[0:10]
sage: else:
....: while len(name) < 10:
....: name = name + ’S’
sage:
sage: rotors = [rotor0,rotor1,rotor2,rotor3,rotor4,
....: rotor5,rotor6,rotor7,rotor8,rotor9]
sage:
sage: rot = range(10)
sage: for i in range(10):
....: rot[i] = Integer(rotors[i].find(name[i]))
sage:
sage: serial = crt(rot, [Integer(len(rotors[i])) for i in range(10)])
sage: print serial

That’s about it for the warmup challenge. A simple problem put in an unusual way.

3 Challenge 1: Euler’s totient
The first real challenge from this pack, crypto1.py is even shorter than the warmup. It
is a classic RSA scheme1 with a twist: the RSA modulus is a product of 8 distinct primes:

sage: n = 1821668788150059822966422307930288186476927434330004078983325993614616857
sage: factor(n)
286331173 * 572662309 * 858993503 * 1145324633 * 1431655777 * 1717986953 *
2004318077 * 2290649227

While multi-prime RSA is not very common, it is certainly not unknown [4]. The
existence of multi-prime variants relies on the existence of Euler’s totient function, φ(n),
for every positive integer. This is the case [9, §5.5]. It is given by

φ(n) = φ(pe00 p
e1
1 . . . perr) = φ(pe00)φ(pe11) . . . φ(perr) =

∏
i

(pi − 1)p
ei−1
i .

In our case, since there are no prime powers, φ(n) is even easier to compute:
∏r

i (pi−1).
After this, all is missing is to compute a modular inverse and we’re set:

1If you do not know RSA by now, check one of the usual references, e.g., [6, §31.5] or [11, §4.5.4]

2

sage: d = 65537
sage: n = 1821668788150059822966422307930288186476927434330004078983325993614616857
sage: name = "Dcoder"
sage: m = 0;
sage: for char in name:
....: m = m*256 + ord(char);
sage: m = m % n;
sage: phi = euler_phi(n)
sage: e = inverse_mod(d, phi)
sage: c = pow(m,e,n)
sage: print c

4 Challenge 2: Tap dat s
Challenge 2 moves on to a different ring: the integers modulo 2. In this challenge, the
user’s name is converted to a sequence of bits2, which are then processed by a linear
feedback shift register (LFSR) [2, §41.1][12, §8.1].

It is unclear what the hard problem to solve is in this challenge; we are given the
connection polynomial (x64 + x4 + x3 + x+ 1), as well as the starting and end sequences
(user name and serial respectively). Generating a valid serial is trivial:

name = "Dcoder"
name_num = 0
for char in name:

name_num = name_num*256 + ord(char)

name_num &= 2**64-1
state = name_num
for i in range(65537):

state = (state >> 1) | ((state&1) ^ (state >> 1)&1 ^ (state >> 3)&1 ^
(state >> 4)&1 ^ 1) << 63

print state

As you can see, all we are doing is directly inverting the LFSR, which is easy as
there’s no extra data being injected into the state. Mathematically speaking, we are
simply turning the linear recurrence

sn = sn−1 + sn−3 + sn−4 + sn−63 + 1

into3

sn−1 = sn − sn−3 − sn−4 − sn−63 − 1.

5 Challenge 3: Group hug
Challenge 3 is quite peculiar. We are given two tables (sbox0 and sbox1) of 358 elements
each, seemingly without much arithmetic meaning (is there one?), and we have two

2Semantically; all arithmetic is still done in the integers.
3Remember that in F2, a+ b = a− b.

3

operations defined on them: “multiplication” and “exponentiation”. The problem here is
to find a serial s such that, given a name n,

sboxn0 = sboxs1.

The obvious way to solve this is to represent sbox0 as sboxx1 , for a yet unknown x.
Then, s = xn. We can do this by computing individual orders and logarithms for each
element and combining them with the Chinese remainder theorem. But there is a more
elegant way.

Every possible finite group of n elements can be thought of as a subgroup of the
symmetric group on {1, 2, . . . , n}, i.e., Sn, the set of all possible n-permutations (or
bijections) under function composition [17, Theorem 3.12]. Thus, we can think of sbox0
and sbox1 as elements (permutations) of S358. They share the same order and cycle
structure, which means they are conjugable, i.e., they are equivalent up to a reshuffling.
The order of both points, as would be expectable from a divisor of a small permutation
group of order 358!, is highly smooth. Thus, generic Pohlig-Hellman [15] and Baby-step
Giant-step [18] as implemented in SAGE are enough to solve the logarithm:

sage: G = SymmetricGroup(358)
sage: s0 = G([x+1 for x in sbox0])
sage: s1 = G([x+1 for x in sbox1])
sage: s0.order()
18446693477654742300
sage: s1.order()
18446693477654742300
sage: discrete_log(s0,s1,s1.order())
1449402469971139457

Once we know this value, generating a valid serial is easy:

name = "Dcoder"
order = 18446693477654742300
name_num = 0;
for char in name:

name_num = name_num*256 + ord(char);
serial = (1449402469971139457 * name_num)%order
print serial

6 Challenge 4: Curves and roundabouts
Challenge 4 is very interesting, as it is not at all clear what’s going on initially. It can be
solved in two distinct ways: the simple one and the hard one. Let’s start with the hard
one.

6.1 Option 1: Lies, damn lies, and polynomials

At first glance, the encrypt function appears simply as a large rational function evalua-
tion over Fp:

4

E(x, y) =

(
f0(x)

g0(x)
, y
f1(x)

g1(x)

)
, f0, f1, g0, g1 ∈ Fp[X].

What is the meaning of this? Truth be told, we don’t need to know. Computing
polynomial roots over finite fields is known to be “fast” [7, §2.3.3][12, §4.3], so we can just
calculate solutions on the polynomials and ignore their meaning altogether.

Solving rational functions is easy. Given a rational function f(x)
g(x)

= b, we can solve
for b by finding the roots of the polynomial f(x)− bg(x). The second component of the
serial doesn’t require finding any roots, just computing a modular inverse. The following
listing details how to do it in SAGE (polynomials are omitted, as they would take up
considerable space):

sage: name = "Dcoder"
sage: name_x = 0
sage: for char in name:
....: name_x = name_x*256 + ord(char)
sage: while 1:
....: quadres = (name_x**3 + 3)%p
....: name_y = pow(quadres, (p+1)/4, p)
....: if pow(name_y, 2, p) == quadres:
....: break;
....: name_x += 1
sage:
sage: serial_x = (f0 - name_x*g0).roots()[0][0]
sage: serial_y = name_y / (f1(serial_x)/(g1(serial_x)))
sage: print "%d-%d" % (serial_x, serial_y)

6.2 Option 2: Occam’s razor

OK. We might have found a way to find valid solutions. But is there any remaining
meaning to this? Is all the elliptic curve innuendo simply misdirection? No.

Multiplication of a point P ∈ E(Fq) by a constant m can be given in terms of division
polynomials [19, Exercise 3.7]. The mth division polynomial ψm ∈ Z[A,B, x, y] of the
curve y2 = x3 + Ax+B is defined by the recursion

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx+ A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3,

. . .

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1, for m ≥ 2

ψ2ψ2m = ψ2
m−1ψmψm+2 − ψm−2ψmψ

2
m+1, for m ≥ 3.

To achieve a multiplication-by-m rational map, we need to define two additional
polynomials:

5

φm = xψ2
m − ψm+1ψm−1,

4yωm = ψ2
m−1ψm+2 + ψm−2ψ

2
m+1.

Then, multiplication of P = (x, y) by m can be given by

mP =

(
φm(x, y)

ψm(x, y)2
,
ωm(x, y)

ψm(x, y)3

)
.

The degree of φm(x, y) is known to be m2 [19, Proposition 5.4]. Since the degree of
f0 is 169 = 132, we can take a good guess that the rational function we are given is the
multiplication-by-13 map. We can confirm this in SAGE by multiplying the initial point
by 13 or by recreating the map:

sage: p = 6277101735386680763835789423207666416102355444459739541047
sage: E = EllipticCurve(GF(p),[0,3])
sage: E.multiplication_by_m(13)

Inverting multiplication by 13 is simply a matter of multiplying by its inverse mod-
ulo the order of E, 6277101735386680763835789423061264271957123915200845512077.
Generating a serial becomes simple:

sage: serial = E(P1)*inverse_mod(13, order)
sage: print serial

7 Challenge 5: Ignorance is BLS
The fifth challenge is definitely the hardest of the bunch. Luckily, the source is riddled
with hints, clues and downright giveaways that help us considerably in figuring out what’s
going on. This challenge brings us into the world of pairings.

7.1 Pairings

There is much to say about pairings and their background. It is impossible for this small
text to serve as an introduction; I’ll defer to good references such as [13, 5, 19, 21]. In
short, a pairing is a map

e : G1 ×G2 → GT ,

where G1 and G2 are additive groups and GT is a multiplicative group, all of prime
order p. The pairing is called symmetric if G1 = G2. Let P ∈ G1 and Q ∈ G2. In a
pairing, the following conditions hold:

Bilinearity For any a, b ∈ Z∗
p, e(aP, bQ) = e(P,Q)ab.

Non-degeneracy e(P,Q) 6= 1.

Computability e(P,Q) can be efficiently computed4.
4Not in Python, it can’t.

6

The Weil pairing [22] employed in this challenge is the symmetric map

e : E(Fpk)[n]× E(Fpk)[n]→ µn,

where E(Fpk)[n], i.e., the subgroup of elements of E(Fpk) (points) whose order divides
n. It results in µn, the group of nth roots of unity5 of Fpk .

The properties of bilinear pairings raise some interesting possibilities. The BLS sig-
nature scheme [3] is one of the most noteworthy schemes resultant of bilinear pairings.
BLS works as follows:

Select parameters Fix groups G1, G2, GT of prime order p. Let P ∈ G1 and Q ∈ G2

be generators of their respective groups. Let ψ be an isomorphism from G2 to G1.
Select an appropriate pairing e.

Key generation Choose random private key x ∈ F∗
p. Compute V = xQ. V ∈ G2 is the

public key.

Signing Let m be a message. Let R = H(m) ∈ G1 and Σ = xR. Σ ∈ G1 is now the
signature for m.

Verification Let m be a message, R = H(m) and Σ its signature. Accept the signature
only if e(Q,Σ) = e(V,R).

Note that the safety of BLS is dependent on the hardness of the discrete logarithm
on either G1, G2 or GT . It can be attacked in G2 by definition, since there is where the
public key is defined. It can also be attacked in G1 since, by having one valid signature,
we know R and xR. Finally it can be attacked in GT since e(Q, xR) = e(Q,R)x.

7.2 Realization

In Challenge 5, the BLS scheme is realized as follows:

• p = 9524793152874449521, n = 9524793149788155121.

• f = 6927354994984596761 + 3748481628317431011a1 + 4620394961492627319a2

+ 5139526688006885996a3 + 7434977584397438745a4 + 5869627458528271108a5

+ 6614627009312766654a6 + 7678097075714978717a7 + 5204744523362322329a8

+ 9398406610703021891a9 + 3699077701165988134a10 + 4097988535177883106a11

+ a12 ∈ Fp[a].

• G1 = E(Fp)[n].

• G2 = E(Fp[a]/f)[n].

• GT = µn = {x ∈ Fp[a]/f |xn = 1}.

• ψ is achieved by using the trace map.

• H(m) = mP .
5An nth root of unity is an element a such that an = 1.

7

• e is the Weil pairing.

Now that we have all the knowledge we need, how do we break this scheme? We
can solve in GT , a 757-bit discrete logarithm where the number field sieve has already
reached [10], but at a significant cost. We can solve in G2, which admits index calculus [8],
but at a large cost. Finally, we can solve it in G1, which has the least cardinality and
element size of all three options.

There are two ways in which we can map the discrete logarithm to G1. The easiest
is to take advantage of one of the example serials, which gives us the points in G1 quite
explicitly. The other way is to map the logarithm in G2 to G1 using the trace map:

ψ(x, y) =
11∑
i=0

(xpi, ypi).

I solved this logarithm in G1 using Wiener and Oorschot’s version of Pollard’s Rho
method [14, 16] in about 1:20 hours6. This yielded the solution x = 1223334444333221111.
Once we have the logarithm, generating a serial is straightforward (cf. 7.1):

sage: x = 1223334444333221111
sage: serial = g1 * (name_c*x)
sage: print serial

8 Final remarks
Both solving these challenges and writing this document has been great fun. This was
a pack that did bring a lot of different constructs into the table, which made it quite
challenging. I sincerely hope that next year brings more of it.

Special thanks to andrewl for making such imaginative and tricky challenges.

References
[1] andrewl: Shmoocon 2011 Crypto Challenge Pack. http://crackmes.de/users/

andrewl.us/shmoocon_2011_crypto_challenge_pack/, January 2011.

[2] Arndt, Jörg: Matters Computational: ideas, algorithms, source code. Springer,
1st edition, 2011. http://www.jjj.de/fxt/fxtpage.html#fxtbook.

[3] Boneh, Dan, Ben Lynn, and Hovav Shacham: Short signatures from the weil pairing.
J. Cryptol., 17:297–319, September 2004, ISSN 0933-2790. http://portal.acm.
org/citation.cfm?id=1028473.1028478.

[4] Boneh, Dan and Hovav Shacham: Fast Variants of RSA. CryptoBytes, 5:1–9, 2002.

[5] Cohen, Henri and Gerhard Frey (editors): Handbook of elliptic and hyperelliptic curve
cryptography. CRC Press, 2005, ISBN 1–58488–518–1.

6Note that we could have solved the logarithm in either group using this (generic) method. However,
G1 has, by far, the fastest arithmetic.

8

http://crackmes.de/users/andrewl.us/shmoocon_2011_crypto_challenge_pack/
http://crackmes.de/users/andrewl.us/shmoocon_2011_crypto_challenge_pack/
http://www.jjj.de/fxt/fxtpage.html#fxtbook
http://portal.acm.org/citation.cfm?id=1028473.1028478
http://portal.acm.org/citation.cfm?id=1028473.1028478

[6] Cormen, Thomas H., Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson:
Introduction to Algorithms. McGraw-Hill Higher Education, 2001, ISBN 0070131511.

[7] Crandall, Richard and Carl Pomerance: Prime numbers. A computational perspec-
tive. Springer-Verlag, New York, 2001, ISBN 0–387–94777–9.

[8] Diem, Claus: On the discrete logarithm problem in elliptic curves. Compositio Math-
ematica, 147(1):75–104, January 2011. http://www.math.uni-leipzig.de/~diem/
preprints/english.html.

[9] Hardy, G. H., E. M. Wright, and A. Wiles: An introduction to the theory of numbers.
Oxford University Press, USA, 6th edition, 2008, ISBN 0199219869.

[10] Kleinjung, Thorsten, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel
Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Peter L. Mont-
gomery, Dag Arne Osvik, Herman Te Riele, Andrey Timofeev, and Paul Zimmer-
mann: Factorization of a 768-bit RSA modulus. In Proceedings of the 30th an-
nual conference on Advances in cryptology, CRYPTO’10, pages 333–350, Berlin,
Heidelberg, 2010. Springer-Verlag, ISBN 3-642-14622-8, 978-3-642-14622-0. http:
//portal.acm.org/citation.cfm?id=1881412.1881436.

[11] Knuth, Donald E.: The art of computer programming, volume 2: seminumerical
algorithms. Addison-Wesley, Reading, 3rd edition, 1997, ISBN 0–201–89684–2.

[12] Lidl, Rudolf and Harald Niederreiter: Finite fields, volume 20 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, sec-
ond edition, 1997, ISBN 0-521-39231-4.

[13] Menezes, Alfred: An introduction to pairing-based cryptography. Volume 477 of Con-
temporary Mathematics, pages 47–65. AMS-RSME, 2009, ISBN 978-0-8218-3984-3.

[14] Oorschot, Paul C. van and Michael Wiener: Parallel collision search with cryptan-
alytic applications. Journal of Cryptology, 12:1–28, 1999, ISSN 0933–2790. http:
//www.springerlink.com/content/g7r4wq6qvn5vcwb2/.

[15] Pohlig, Stephen C. and Martin E. Hellman: An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE Transactions on
Information Theory, 24:106–110, 1978, ISSN 0018–9448.

[16] Pollard, John M.: Monte Carlo methods for index computation mod p. Mathematics
of Computation, 32:918–924, 1978, ISSN 0025–5718.

[17] Rotman, Joseph J.: An Introduction to the Theory of Groups. Allyn and Bacon, Inc.,
Newton, Massachusetts, 4th edition, 1995, ISBN 978-0387942858.

[18] Shanks, Daniel: Class number, a theory of factorization, and genera. In Lewis,
Donald J. (editor): 1969 Number Theory Institute, volume 20 of Proceedings of
Symposia in Pure Mathematics, pages 415–440, Providence, Rhode Island, 1971.
American Mathematical Society, ISBN 0–8218–1420–6.

9

http://www.math.uni-leipzig.de/~diem/preprints/english.html
http://www.math.uni-leipzig.de/~diem/preprints/english.html
http://portal.acm.org/citation.cfm?id=1881412.1881436
http://portal.acm.org/citation.cfm?id=1881412.1881436
http://www.springerlink.com/content/g7r4wq6qvn5vcwb2/
http://www.springerlink.com/content/g7r4wq6qvn5vcwb2/

[19] Silverman, Joseph H.: The Arithmetic of Elliptic Curves, volume 106 of Graduate
Texts in Mathematics. Springer, 2nd edition, 2009, ISBN 978-0-387-09493-9.

[20] Stein, W.A. et al.: Sage Mathematics Software (Version 4.6.1). The Sage Develop-
ment Team, 2011. http://www.sagemath.org.

[21] Washington, Lawrence C.: Elliptic Curves: Number Theory and Cryptography, Sec-
ond Edition. Chapman & Hall/CRC, 2008, ISBN 9781420071467.

[22] Weil, André: Sur les fonctions algébriques à corps de constantes fini. C. R. Acad.
Sci. Paris, 210:592–594, 1940. French.

A Full solution code
import sys
import math

rotor0 = " !\"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ‘abcd"
"efghijklmnopqrstuvwxyz{|}~1akuEOY"

rotor1 = " !\"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ‘abcd"
"efghijklmnopqrstuvwxyz{|}~2blvFPZ9hqz"

rotor2 = " !\"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ‘abcd"
"efghijklmnopqrstuvwxyz{|}~3cmwGQ10irAIQ"

rotor3 = " !\"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ‘abcd"
"efghijklmnopqrstuvwxyz{|}~4dnxHR2ajsBJRY6cj"

rotor4 = " !\"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ‘abcd"
"efghijklmnopqrstuvwxyz{|}~5eoyIS3bktCKSZ7dkqw"

rotor5 = " !\"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ‘abcd"
"efghijklmnopqrstuvwxyz{|}~6fpzJT4cluDLT18elrxCHMR"

rotor6 = " !\"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ‘abcd"
"efghijklmnopqrstuvwxyz{|}~7gqAKU5dmvEMU29fmsyDINSW159cgkoswAEIM"

rotor7 = " !\"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ‘abcd"
"efghijklmnopqrstuvwxyz{|}~8hrBLV6enwFNV30gntzEJOTX260dhlptxBFJNQTWZ"

rotor8 = " !\"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ‘abcd"
"efghijklmnopqrstuvwxyz{|}~9isCMW7foxGOW4ahouAFKPUY37aeimquyCGKORU"
"X13579ac"

rotor9 = " !\"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ‘abcd"
"efghijklmnopqrstuvwxyz{|}~0jtDNX8gpyHPX5bipvBGLQVZ48bfjnrvzDHLPSV"
"Y24680bdef"

def xgcd(u, v):
u1 = 1
u2 = 0
u3 = u
v1 = 0
v2 = 1
v3 = v
while v3 != 0:

q = u3 / v3
t1 = u1 - q * v1
t2 = u2 - q * v2
t3 = u3 - q * v3

10

http://www.sagemath.org

u1 = v1
u2 = v2
u3 = v3
v1 = t1
v2 = t2
v3 = t3

return u1, u2, u3

def inverse_mod(a, p):
u1,v1,d = xgcd(a, p)
return u1 if u1 > 0 else u1+p

def crt(n,p):
r = len(p)
L = reduce(lambda x,y: x*y, p)
li = [L / x for x in p]
vi = [inverse_mod(li[i], p[i]) for i in range(r)]
return reduce(lambda x,y: x+y, map(lambda x,y,z: x*y*z, n,li,vi)) % L

def ec_add(P,Q,a,b,p):
Px = P[0]
Py = P[1]
Qx = Q[0]
Qy = Q[1]
if P == [0,1]:

return Q
if Q == [0,1]:

return P
if P == Q:

s = ((3*Px**2 + a)*inverse_mod(2*Py, p)) % p
Rx = (s**2 - 2*Px)%p
Ry = (-P[1] + s*(Px-Rx)) % p
return [Rx,Ry]

else:
s = (Qy - Py)*inverse_mod(Qx - Px, p) % p
Rx = (s**2 - Px - Qx)%p
Ry = (s*(Px - Rx) - Py)%p
return [Rx,Ry]

def ec_mul(P,e,a,b,p):
Q = [0,1]
for i in range(int(math.ceil(math.log(e,2)))):

if e%2:
Q = ec_add(Q,P,a,b,p)

P = ec_add(P,P,a,b,p)
e >>= 1

return Q

def warmup(name):
if len(name) > 10:

name = name[0:10]
else:

while len(name) < 10:
name = name + ’S’

11

rotors = [rotor0,rotor1,rotor2,rotor3,rotor4,
rotor5,rotor6,rotor7,rotor8,rotor9]

rot = range(10)
for i in range(10):

rot[i] = rotors[i].find(name[i])

serial = crt(rot, [len(rotors[i]) for i in range(10)])
return serial

def crypto1(name):
d = 65537
n = 1821668788150059822966422307930288186476927434330004078983325993614616857
e = 174725878413998504300527427786354881690797517767573630493566745566969857
m = 0;
for char in name:

m = m*256 + ord(char);

if m > n:
m = m % n;

return pow(m, e, n)

def crypto2(name):
name_num = 0
for char in name:

name_num = name_num*256 + ord(char)

name_num &= 2**64-1
state = name_num
for i in range(65537):

state = (state >> 1) | ((state&1) ^ (state >> 1)&1 ^ (state >> 3)&1 ^
(state >> 4)&1 ^ 1) << 63

return state

def crypto3(name):
order = 18446693477654742300
dlog = 1449402469971139457
name_num = 0
for char in name:

name_num = name_num*256 + ord(char);
return (dlog * name_num)%order

def crypto4(name):
p = 6277101735386680763835789423207666416102355444459739541047
a = 0
b = 3
o = 6277101735386680763835789423061264271957123915200845512077
k = inverse_mod(13, o)

name_x = 0;
for char in sys.argv[1]:

name_x = name_x*256 + ord(char)
while 1:

12

quadres = (name_x**3 + 3)%p
name_y = pow(quadres, (p+1)/4, p)
if pow(name_y, 2, p) == quadres:

break;
name_x += 1

P1 = [name_x, name_y]
P2 = ec_mul(P1,k,a,b,p)
return "%d-%d" % (P2[0],P2[1])

def crypto5(name):
a = 0
b = 13
p = 9524793152874449521
x = 1223334444333221111
o = 9524793149788155121
g1 = [1,4577206343548535956]

name_c = 0;
for char in sys.argv[1]:

name_c = name_c*256 + ord(char)
S = ec_mul(g1, (x*name_c)%o, a,b,p)
return "%d-%d" % (S[0],S[1])

if(len(sys.argv) != 2):
print "Usage: ", sys.argv[0], " <name>"
quit()

print "Warmup : ", warmup(sys.argv[1])
print "Crypto 1: ", crypto1(sys.argv[1])
print "Crypto 2: ", crypto2(sys.argv[1])
print "Crypto 3: ", crypto3(sys.argv[1])
print "Crypto 4: ", crypto4(sys.argv[1])
print "Crypto 5: ", crypto5(sys.argv[1])

13

	Introduction
	Warming up
	Challenge 1: Euler's totient
	Challenge 2: Tap dat s
	Challenge 3: Group hug
	Challenge 4: Curves and roundabouts
	Option 1: Lies, damn lies, and polynomials
	Option 2: Occam's razor

	Challenge 5: Ignorance is BLS
	Pairings
	Realization

	Final remarks
	Full solution code

