
C
an

Se
cW

es
t2

00
7

Post-Mortem RAM Forensics
(or Reversing Windows RAM after-the-fact)

Tim Vidas

CanSecWest 2007



VIDAS
2

C
an

Se
cW

es
t2

00
7

Who am I?

• Tim Vidas
– Research was preformed under 

employment by the Nebraska University 
Consortium on Information Assurance 
(NUCIA) @ the University of Nebraska at 
Omaha (UNO)

– Sr. Tech. Research Fellow
– BS and MS in CS

-PhD in the works

– Certs: CISSP, 40xx, Sec+, Guidance,  etc.
– Instructor: University, Guidance, LM RRCF



VIDAS
3

C
an

Se
cW

es
t2

00
7

NUCIA
(obligatory sales pitch slide)

• Nebraska University Consortium on 
Information Assurance

• Sits in both CS and MIS programs
• IA full time
• NSA Center of Academic Excellence
• Traditional university coursework in IA, 

Crypto, Forensics, Secure Administration, 
Certification and Accreditation, etc

• STEAL Labs
• “Other work”



VIDAS
4

C
an

Se
cW

es
t2

00
7

Talk Assumptions

• Only talking about x86 architecture
• Only talking about MS Windows 

(nt based)
• Only talking about ‘normal’ setups 

(no ‘weird’ boot switches or builds)



VIDAS
5

C
an

Se
cW

es
t2

00
7

Evidence Volatility

• Registers    (more volatile)
• Caches
• Memory, process table, routing 

table, arp cache, etc
• Temp file systems
• File system / Disk Block
• Archival Media (less volatile)

Check out RFC 3227: 

“Guidance for Evidence Collection and Archiving



VIDAS
6

C
an

Se
cW

es
t2

00
7

IR: Current Process
• Currently there are two main states 

a system could be in at IR time.
• “Dead” System

– Duplicate drives (non-volatile stores)
• “Live” System

– ?

Is System
On?

Arrive on 
Scene

No

Yes

?

Seize System
/ Copy Drive



VIDAS
7

C
an

Se
cW

es
t2

00
7

Current Process

• Live System
– Pull the plug

• Better than a ‘shutdown’
– Gather state information 

• More common in incident response
• Interact with the machine

– Observing the state changes it

Then, of course, the simple act of observing the outcome 
changes it, so the Heisenberg Uncertainty Principle comes 
into play here as well. You can't observe the result of an 
experiment because the act of observing it changes the 
result. Think of the Schrodinger's Cat.   

- Professor Farnsworth



VIDAS
8

C
an

Se
cW

es
t2

00
7

Why copy RAM
• Drive Encryption

– OneHalf virus
• Completely memory resident malware

– Nimda, SQLslammer
• Recovery of ‘un-reallocated’ space

– Similar to recovery of deleted files.
…but in memory

• Easier than unpacking manually 
– In some cases

• The Hacker Defense
• Strings luckiness (of course)
• Why not?



VIDAS
9

C
an

Se
cW

es
t2

00
7

How to copy RAM
• Windows

– \.\Physical\Memory (bs=4096)
• All except Server 2003 SP1  +

– \.\DebugMemory anyone?*
– Crash Dump

• Forced?
• Crash on CtrlScrl regkey
• Notmyfault.exe

• DMA through something like Firewire**
• Special hardware (PCI card?)***

*Evidently accessed through [Nt|Zw]SystemDebugControl, also G. Garner Jr says neither 
object can access RAM fully…

**Proposed, in the firewire spec, but I don’t know how successful (Becher)

***A Hardware Based Memory Acquisition Procedure for Digital Investigations (Carrier, Grand )



VIDAS
10

C
an

Se
cW

es
t2

00
7

Problem
• Volatile stores like RAM change 

constantly
• Image cannot be validated as it can in the 

non-volatile world
– We instead get a “time-sliding view”
– Pre/post md5’s are meaningless as it is 

expected that RAM will be different by the 
time it is compared

– Possibly use something like hash windows to 
show that two images made ‘quickley’ are 
‘similar’ (or ssdeep…prob not needed)

• The act of creating the copy changes the 
state of the machine

• No write blocker installed



VIDAS
11

C
an

Se
cW

es
t2

00
7

Time Sliding Window
T = 0: “Pre” state 

T = 1: copy is made
T = 2: “Post” state

Objects in the last half 
were both removed and 
created before being 
copied, and an object in 
the first half was removed 
after it was copied (but 
before the copy completed

T = 3: copy reflects 
neither state



VIDAS
12

C
an

Se
cW

es
t2

00
7

The case for copying

• Even though it is known that 
creating the copy changes the 
state (ie. creates a new process)

• It creates less impact than 
interacting with the machine in 
order to gain insight as to the the 
current state



VIDAS
13

C
an

Se
cW

es
t2

00
7

Impact
• If a first responder arrived on 

scene and a computer is powered 
off, is it considered ‘good practice’
to turn it on?
– Why not?
– Last booted times, file access times, 

pagefile, boot time run options
– If it is preferred to not ‘touch’ the disk, 

why ‘touch’ RAM?
– Lets start moving up the order of 

volatility chart



VIDAS
14

C
an

Se
cW

es
t2

00
7

Minimize impact
• systeminfo.exe
• Psinfo
• netstat, 
• date, 
• Time
• psuptime, 
• net statistics
• pulist, 
• tlist, 
• pslist, 
• listdllsdir, 
• afind, 
• macmatch, 
• autoruns, 

• handle, 
• pclipnet
• users, 
• psloggedon, 
• ntlast, 
• Dumpusers
• ipconfig, 
• fport, 
• psservice, 
• promiscdetect, 
• netstat, 
• nbstat, 
• net, 
• arp

vs dd

(or similar)

…and the one on the right potentially has more information!!

Nolan, O’Sullivan, Branson, Waits. First Responders Guide to Computer Forensics.  
Carnegie Mellon University 2005.



VIDAS
15

C
an

Se
cW

es
t2

00
7

The caveat
• Minimal impact is appealing, but the 

information is a requirement

• In order to be acceptable, at least the 
same amount of information that is 
attainable via interaction, must be 
attainable via analysis of the copy of 
the volatile
store

– Information gained:
FromImageFile >= Interactive Response

– Impact to system:
FromImageCreation <= Interactive Response



VIDAS
16

C
an

Se
cW

es
t2

00
7

Analysis
• As the area matures, the analysis of 

volatile stores will be able to recreate all 
the information regularly attained with all 
the previously mentioned commands

• It is essentially a combination of Reverse 
Engineering, Kernel Debugging… with a 
healthy dose of memory management 
and a dash of coding

• Information from non-volatile stores may 
be required / helpful to analysis
– Pagefile comparison and/or “unification”
– Another slide on this later on…



VIDAS
17

C
an

Se
cW

es
t2

00
7

Current Analysis
• Even contemporary analysis (;Login 2005) is 

limited to comparing delta’s in a hex editor 
and/or parsing for strings)
– I’m not sure I can call the ’05 login article 

contemporary any more.  There have been an 
increasing number of references in the past 18 
months.  DFRWS, DODCyberCrime, BlackHat, IFIP…

• Samples created as part of my research 
showed that even a ‘cleanly’ booted machine 
would create 80-120 MB of strings output per 1 
GB of RAM.
– 100 MB of largely unusable text
– AfhdksoiÅ 1 string

• Better than nothing, but not great by any means



VIDAS
18

C
an

Se
cW

es
t2

00
7

Proof of Concept
• Recreate the Task Manger from a RAM 

copy
– Look for structures that might have been 

processes
• Look for the ‘signature’ of a process
• Discard structures that don’t meet a certain 

threshold (which can actually be quite stringent)
• Rules vs recommendations

– Brute force scan: Don’t trust linked list, active 
process marker, etc

– Works on an image, dmp style dump, 
vmware mem file, etc

– I unimaginatively call this “Process Locator”
or procloc for the easier to type abbreviation



VIDAS
19

C
an

Se
cW

es
t2

00
7

Proof of Concept
• Many hurdles

– Binary level concepts 
– Different OS versions (2k vs XP, sp1 

vs sp2) have different offsets into 
similar data structures

– Many structures and even data types 
require quite a bit of decoding

– Virtual Memory
– Size of samples
– Foundational concepts don’t hold

• RAM is not as volatile as one might hope*
* Chow – uhm…a couple years ago?   - then repeated as part of this research, short story –
minutes without power plug, depends on hardware



VIDAS
20

C
an

Se
cW

es
t2

00
7

EPROCESS
• nt!_EPROCESS
• +0x000 Pcb : _KPROCESS
• +0x06c ProcessLock : _EX_PUSH_LOCK
• +0x070 CreateTime : _LARGE_INTEGER
• +0x078 ExitTime : _LARGE_INTEGER
• +0x080 RundownProtect : _EX_RUNDOWN_REF
• +0x084 UniqueProcessId : Ptr32 Void
• +0x088 ActiveProcessLinks : _LIST_ENTRY
• +0x090 QuotaUsage : [3] Uint4B
• +0x09c QuotaPeak : [3] Uint4B
• +0x0a8 CommitCharge : Uint4B
• +0x0ac PeakVirtualSize : Uint4B
• +0x0b0 VirtualSize : Uint4B
• +0x0b4 SessionProcessLinks : _LIST_ENTRY
• +0x0bc DebugPort : Ptr32 Void

etc…etc…



VIDAS
21

C
an

Se
cW

es
t2

00
7

EPROCESS
• The EPROCESS structure is 

fundamental
• Among other information, PID, Creation / 

Deletion times, executing image name, 
priority, etc

• Used for scheduling
– …well, sort of <insert discussion of threads if 

wanted>
• Pointers to previous and next process 

(double linked list)
– Not particularly helpful in this case, as ‘rogue’

and ‘old’ processes are desirable to find as 
well



VIDAS
22

C
an

Se
cW

es
t2

00
7

If it looks like an EProcess…
• Use a debugger like WinDbg (with 

LiveKD?) to obtain offsets to parts 
of an EProcess (version specific)

+0x070 CreateTime : _LARGE_INTEGER
+0x078 ExitTime : _LARGE_INTEGER

or in a more detail with the same tool as:
+0x070 CreateTime : union _LARGE_INTEGER, 4 elements, 0x8 bytes

+0x000 LowPart : Uint4B
+0x004 HighPart : Int4B
+0x000 u                : struct __unnamed, 2 elements, 0x8 bytes

+0x000 LowPart : Uint4B
+0x004 HighPart : Int4B

+0x000 QuadPart : Int8B
+0x078 ExitTime : union _LARGE_INTEGER, 4 elements, 0x8 bytes

+0x000 LowPart : Uint4B
+0x004 HighPart : Int4B



VIDAS
23

C
an

Se
cW

es
t2

00
7

…and smells like an EProcess…

• Use these offsets to perform 
various checks: (simplified for ppt)

– Except for “IDLE” processes must 
have a priority > 0

– Processes must have a page 
directory

– All threads must be located in above 
the kernel memory bound 

– Quantum, workingset max, max # 
processes, sync events, etc



VIDAS
24

C
an

Se
cW

es
t2

00
7

…it must be an EProcess!

• In practice it seems that even a 
few number of tests (like about 5) 
can produce extremely accurate 
results

• This methodology can also be 
applied to other structures…
threads are an obvious next step



VIDAS
25

C
an

Se
cW

es
t2

00
7

Cross Volatility Comparison

• Ideally, the analysis of volatile data stores 
can be aided (in practice) by information 
gleamed from non-volatile stores
– Pagefile to RAM comparison (verification? 

Unification?)
• A ‘side effect’ of crash dumps is that the page file is 

over written.
• The formation of the DMP file is actually an 

interesting process…

– Event log correlation
– What if the disk shows Windows XP, but RAM 

shows Linux structures? 
– etc



VIDAS
26

C
an

Se
cW

es
t2

00
7

PoC: Process Owner

EPROCESS
AccessToken

SID and attributes

SID

This can’t actually be decoded further than SID, because the SID 
to “human readable” mapping is not held in RAM.  This is a prime 
example of how information from a non-volatile store may be 
needed to aide the volatile analysis (registry, SAM, Domain)



VIDAS
27

C
an

Se
cW

es
t2

00
7

PoC: Virtual Addressing

• The Process Environment 
Block(PEB) is always in the same 
place!
– Well, it’s a virtual address, so it’s 

‘real’ location needs to be decoded 
from virtual to physical using other 
values from the structure



VIDAS
28

C
an

Se
cW

es
t2

00
7

PoC: Virtual Memory

Page Directory Index Page Table Index Byte Offset

Virtual Address

PDI Entry

Page Directory

PTI Entry

Page Table

Page

Physical Memory Page

Byte

Shown without PAE enabled

Adapted from Windows Internals : Solomon and Rossinovich

See also Intel Software Developers Manuals

Physical



VIDAS
29

C
an

Se
cW

es
t2

00
7

PoC: FileTime
• 100 nanosecond intervals  since 1601 
• vs UNIX 1 second intervals since 1970
• and it’s a 64 bit value, stored as two 32 

bit values, each lil endian
• # Filetime conversions  
• # FFFFFF00 00000000 = under 1.5 seconds
• # 00000001 00000000 = under 1.5 seconds
• # 00000010 00000000 = about 26 seconds
• # 00000000 01000000 = about 7:09
• # 00000000 10000000 = about 1:51:31
• # 00000000 00010000 = about 1 day 6:32:31
• # 00000000 00100000 = about 21 days 8:40:18
• # 00000000 00000100 = about 11 months 22 days 18:44:57
• # 00000000 00001000 = about 14 years 3 months 10 months 

11:59:22
• # 00000000 00000001 = about 228 years 5 months 5 days 

23:50:03
• # 00000000 00000010 = about 6353 years 6 months 18 days 

21:21:00



VIDAS
30

C
an

Se
cW

es
t2

00
7

PoC: FileTime
• sub Win2Unix4() {
• my $Lval = shift;
• my $Hval = shift;
• my $Time = 0;
• my $Shift = 11644473600;  #Shift of time
• if(($Lval == 0) and ($Hval ==0)){
• return $Time;
• }else{
• $Time = int(($Hval * 2**32 / 10000000) + ($Lval / 10000000));
• $Time -= $Shift;
• }
• if ($Time < 0){
• $Time = 0;
• }
• return $Time;
• }

Actually not that much code!



VIDAS
31

C
an

Se
cW

es
t2

00
7

PoC: Demo

• Create Images
– dd example 

• trusted binary’ (live CD, statically linked)
• external Mass storage container
• ‘raw’ type

– Forced Crash condition
• registry keys 
• 3rd party testing tool
• External Mass storage container
• proprietary DMP format created on reboot

• Use PERL to parse through a ton of data 
– Practical Extraction and Reporting Language

C



VIDAS
32

C
an

Se
cW

es
t2

00
7

PoC: Demo
• Images created from cleanly installed 

OSes 
– Only video/network drivers

• IBM MPro machine(s) with 512 MB RAM 
(turned off for 15 minutes)

• Helix 1.7 CD inserted and physical 
memory is imaged (if possible)

• Registry keys created to set crashdump to 
‘on’ and ‘full’

• Nonmyfault.exe used to forced system 
crash and thus a crash-dump style image

• Considering posting test images publicly…



VIDAS
33

C
an

Se
cW

es
t2

00
7

PoC: Demo

• On a removable hard drive
– raw style captures via helix dd
– Crash style captures via 

nonmyfault.exe & crashdump
• Just typical PERL 

– Activestate
– Cross platform

• The idea is to replicate as much or 
more information that Windows 
Task Manager



VIDAS
34

C
an

Se
cW

es
t2

00
7

PoC: Demo

• Ready….go!

– MEMORY.DMP format
– dd –style
– Processes
– Threads
– Exe extraction  

• Virtual memory layer required
• Finished coding this during Adam 

Laurie’s talk yesterday – consider BETA



VIDAS
35

C
an

Se
cW

es
t2

00
7

PoC: Demo

• SO…given that the demo was 
successful
– We saw that it is possibly to get as 

much (or more) information post-
incident while cause as much (or 
less) impact to the system

• OR if it wasn’t successful
– We _should_ have seen the above ;-)



VIDAS
36

C
an

Se
cW

es
t2

00
7

Goals met

• Information requirement
– pslist > taskmanager
– procloc ~= pslist



VIDAS
37

C
an

Se
cW

es
t2

00
7

Future work 
(process specific)

• Compare the Brute force list to a list 
obtained by walking the list
– ‘cross view diff’ off the untrusted list with the 

‘more trusted’ list – red flags
• “unification of virtual memory”

– Swap all pages ‘in’ kinda, then defrag it?!
• Good, OS version auto detection
• Automate correlation with other sources 

of information
– If you supply a Registry hive, auto process 

owner from SID
• Automatically and/or selectively extract 

executables



VIDAS
38

C
an

Se
cW

es
t2

00
7

Future work 
(process specific)

• Flag processes/threads that aren’t 
“playing by the rules”
– Window title, path, pointers, parent, etc

• Follow the entire tree
– Attribute every thread to a process, every 

page to what allocated it, parent/child 
link…etc.  Then what’s left?

• Support the /PAE and /3G boot switches
• Vista support (right now, parsing looks to 

be easy, acquisition looks to be hard)
• Non i386 support
• Parsing from within EnCase?



VIDAS
39

C
an

Se
cW

es
t2

00
7

Future work 
(memory, not process specific)

• File cache
– Delayed write to disk, usually for 

priority reasons
• Network connections

– Tied to processes
• Video card?

– Some malware is executing directly 
from video card memory



VIDAS
40

C
an

Se
cW

es
t2

00
7

Future Setbacks 
(perceived – opinion)

• Malware that manipulates acquisition
– There are about 3 non-hardware ways to acquire, 

trivial to ‘hook’ these and hide during acquisition (of a 
live non-rebooted machine) 

– Not deny access, simply modify output – similar to 
techniques used in rootkits today to hide – processes 
from task manager, etc

• Microsoft will continue to make it more and more 
difficult to get to ‘RAW’ RAM
– Restriction to objects
– Other things like VISTA’s randomization

• RAM becomes even more scattered that the 
current memory model
– Like VISTA’s RAM extender (USB) – ReadyBoost

• New architectures



VIDAS
41

C
an

Se
cW

es
t2

00
7

Food for thought:

• But the cases I have don’t require 
all this stuff!
– The hacker defense will bear it’s face 

eventually
– RAM imaging is going to be ‘industry 

standard’ it’s just a matter of time
– You may be more likely to have a 

Rootkit that you think*

*You’ve heard of Sony right? 



VIDAS
42

C
an

Se
cW

es
t2

00
7

Google starters
(in no real order)

• PhysicalMemory object
• MyFip.H
• Fanbot.A
• DKom
• Hacker Defender
• Shadow Walker
• EProcess
• The artist formerly called Sysinternals

(process explorer for starters)
• “Blue Pill” + rootkit
• UPX
• Packer
• Sony Rootkit
• RAIDE
• TRUMAN
• Shimmer.a

• Tim Vidas   ☺
• Mariusz Burdach
• Jesse Kornblum
• Andreas Schuster
• Aaron Walters
• Nick Petroni
• Harlan Carvey

• ProcLoc
• Volatools
• WMFT
• PTFinder
• LSPI
• Memparse



VIDAS
43

C
an

Se
cW

es
t2

00
7

Question #1 from the 
Audience

• So how do you recommend that I 
implement RAM into my investigations?
– Officially I’m probably not supposed to 

answer that 
• The whole I’m not a lawyer and don’t play one on 

TV thing
• The whole I’m an Academic not a practitioner thing

– That said:  If the situation allows, maybe the 
best way is to:

• arrive on scene
• get ready (BIOS cheat sheet, dd on bootable CD)
• pull plug ***
• plug back in immediately ***
• boot to CD
• copy RAM
• image disk as normal
• take both back with you

***Or maybe it’s via dd on a USB mass storage – copy w/o unplugging, time / results will tell



VIDAS
44

C
an

Se
cW

es
t2

00
7

Other Questions?  

• Contact info
– I’ve got a bunch of cool CanSecWest

meishi (business cards)
• Source Code

– Completely FREE
– GPL
– Perl is available on the net already
– C is available right now (come and 

get it).  It will be available on the net 
after I clean it up a bit.



VIDAS
45

C
an

Se
cW

es
t2

00
7

Cited
• Windows Internals, Russinovich / 

Solomon
• Intel 64 and IA-32 Architectural 

Software Developers Manuals
– PDFs are online
– Dead Tree copies are FREE 

• Rootkits, Hogland / Butler
• Reversing, Eilam
• And the papers/documents footnoted in 

the slides


