
vulnerabilities die hard

kowsik@musecurity.com
http://labs.musecurity.com

i see dead protocols

this talk …

 is not about mu
 is not about [just] fuzzing
 does not contain pictures from matrix

… is about

 protocols
 in the pedantic sense

 abstractions and patterns
 string theory and unification
 laziness, impatience and hubris

what’s a protocol anyways?

 rules governing the syntax, semantics, and
synchronization of communication
 wiki: Protocol (computing)

 protocol != network
 protocols represent the attack surface

 you are who your interface is
 only way into the code

 that really matters from the outside

taxonomy

 network-based (layers 2 through 7)
 command line interfaces

 psql, argc/argv
 function calls

 Java, IDispatch#invoke, ioctl
 file formats

kevin bacon

rfc’s

re
fe

re
nc

es

six degrees of protocols

 SIP uses LDAP DN’s
 which use ASN

 which are in X.509 certificates
 which is used in TLS/SSL

 which contains Name/Value pairs
 that’s used in iCal format

 DHCP has NetBIOS names
 which is used in CIFS

 which uses Kerberos
 which uses ASN

 which …

dom’s and channel’s

 state, structure, semantics and constraints
 a semantic DOM
 with associated vulnerability patterns

 io/delivery mechanism
 sockets (raw, v4, v6, tcp, udp, ssl, sctp, …)
 interactive channels (telnet, ssh, console, …)
 bluetooth, wireless, usb, firewire
 ioctl’s
 files

fuzzing

 is really about semantic data structures
 free form deformation
 dependency propagation
 constraint violation

string is a string is a …

peeling the onion

method

{

encoding

{
message

channel

peeling the onion

{{
serial > dnp::write > write_register()
udp > sip::invite > incoming_call()
telnet > set in “trust” … > set_interface()
http > soap::xml > AddShoppingCart()
file > qt:moov > play_movie()

50 ways to encode your lover

 def add_csw_speakers(emails)
 def add_csw_speakers (emails):
 int add_csw_speakers(const char **emails)
 public void add_csw_speakers(String[] emails)

command line interface

csw> add speakers “foo@bar.com” “a@b.com"

xdr/rpc

07 e2 5d 7b 00 00 00 00 00 00 00 02 00 01 86 a0 ..]{............

00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 0b

66 6f 6f 40 62 61 72 2e 63 6f 6d dd 00 00 00 07 foo@bar.com.....

61 40 62 2e 63 6f 6d dd a@b.com.

asn.1 (ber)

30 16 04 0b 66 6f 6f 40 62 61 72 2e 63 6f 6d 04 0...foo@bar.com.

07 61 40 62 2e 63 6f 6d .a@b.com

soap/xml

<s:Envelope xmlns:s=“http://schemas.xml.soap.org”>

 <s:Body>

 <csw:AddSpeakers xmlns:csw=“http://www.cansecwest.com”>

 <csw:speaker>foo@bar.com</csw:speaker>

 <csw:speaker>a@b.com</csw:speaker>

 </csw:AddSpeakers>

 </s:Body>

</s:Envelope>

write once, 0-days everywhere

 problems at multiple levels
 inside the method
 with the encoding
 with the message
 with the protocol
 with the channel

 YMMV with 0x41’s
 depends on which layer of the onion
 validity of one layer is a prerequisite for the next

m-theory

symmetry breaking

field

sample

field

sample

generator parser

m-theory

specificationgrammar

sample

field

compiler manual

outputparser inferenceinput

definition: field

 core abstraction
 exists outside of specific channels

 nested to arbitrary levels
 structural/semantic relationships
 primary methods

 input
 output
 alternates

 static and dynamic
 semantics and context-aware
 domain-specific
 fuzzing is one kind of attack vector!

fields

 uint8, uint16, flags32, enum24, …
 length, checksum, crc
 name-value, dsv, c-string, tlv
 http-header, http-content-length-header
 sip-request, sip-via-header
 qt-moov-atom, png-ihdr-chunk

super symmetry and equivalence

f1

cafebabe

f2

cafebabeassert ==

output input output

laws of fields

 fields shall be channel agnostic

 that which is sent has potential for alternates
 requests in client mode
 responses in server mode

 that which is received is canonicalized
 etag’s, challenge-handshake, cookies
 via headers, route tables

input bounds

ascii.line {
encode.base64 {

ascii.dsv :delimiter => ‘:’ {
string.basic :value => ‘hello’
string.basic :value => ‘world’

}
}

}

generates and parses “aGVsbG86d29ybGQ=\r\n"

action at a distance

struct {
foo = ascii.line {

ascii.dsv(:delimiter => ‘ ‘) {
ascii.c_string :value => ‘hello world’

}
}
ascii.length :of => foo

}

fieldomatic complexity

 fields interact and relate to each other
 output of one drives the other
 form an acyclic graph

 use for dynamic alternates
 length, offsets
 ordering, prerequisites and constraints

 dependencies
 structure, semantics and state

 #inbound-edges == cyclomatic complexity

laziness

specificationgrammar

sample

field

compiler manual

outputparser inferenceinput

 specifications to fields take time
 very manual

 extension-space is unbounded
 not a static problem

 constraints and semantics not always obvious
 being an rfc bigot doesn’t do you any good

parser

specification

parser

fieldsample
parser

quicktime parser (snippet)

 def parse_atom_elst
 type.uint8 'version'
 type.flags24 'flags'
 nentries = type.count32('num-entries')
 group('entries') { |g|
 nentries.of = g
 nentries.value.times do |i|
 group("entry-#{i}") {
 type.uint32 'track-duration'
 type.time32 'media-time'
 type.uint32 'media-rate'
 }
 end
 }
end

impatience

specificationgrammar

sample

field

compiler manual

outputparser inferenceinput

inference

 similar to edge detection
 extract fields and relationships

 structural and semantic inference
 results in a semantic dom
 field’s input method guides inference

hubris

specificationgrammar

sample

field

compiler manual

outputinference parserinput

compiler

 machine parsable grammars
 ASN: asn1c
 XDR: rpcgen
 IDL: midl (pymsrpc)
 …

 remember: a string is a string is a …
 what’s missing?

 transactions, scenarios and state
 and yeah, encoding and transport

compiler

field

samples

compiler
grammar

defaults

summary

 protocols do unify in the 11th dimension
 semantic dom is all there to it
 there’s no such thing as a CLI fuzzer

 it’s just a different channel
 laziness, hubris and impatience

 not just for perl programmers
 don’t write fuzzers

 build a semantic dom instead
 fuzzing “just” happens

questions?

kowsik@musecurity.com
http://labs.musecurity.com

