
bØrken fonts
The Story of Naïve Parsers and attacker controlled reboots

Marc Schönefeld, Security Researcher

(c) 2011 Marc Schoenefeld

1

The Speaker

•  Working daytime for Red Hat, busy with Java bugs
•  Did talks on Security and RE topics on several

conferences before (CSW, PacSec, HITB, SyScan,
Blackhat, …)

•  Most vulnerabilities published until end of 2009 were
java-centric or web application flaws

•  The results presented in this talk presents research done
„after hours“, hence this is no official Red Hat talk

(c) 2011 Marc Schoenefeld

2

On the search

•  Initial goal was to broaden my horizon on web
technologies and tools

•  End of 2009 I thought like there must be some shorter
way to find software bugs than by reading code J
•  Ideally find a cross-OS attack surface
•  Not too many vulnerabilities reported yet
•  A decent potential to write some new tool

•  Hmm, what technology fits this criteria ?

(c) 2011 Marc Schoenefeld

3

New technologies
new bugs

•  The web is a large playground for new technologies
•  New features often introduced in products with eye on

functionality only, who cares for security if it looks nice
•  So did HTML5 by introducing the webfont feature
•  http://www.w3.org/TR/css3-webfonts/#font-descriptions

•  From an attackers perspective grabbing fonts from an
untrusted site for local rendering is a tempting invitation

(c) 2011 Marc Schoenefeld

4

Fonts in browsers
(c) 2011 Marc Schoenefeld

5

Fonts in browsers

Font-Face Syntax
@font-face {!
 font-family: ‘CBM';!
 src: url(’CBM.eot');!
 src: local('☺'),!
 url("CBM.woff") format("woff"),!
 url(”CBM.ttf") format("truetype"),!
 url(”CBM.otf") format("opentype"),!
 url(”CBM.svg") format("svg");  
}!

The small print
•  A font is represented by

logical name
•  To be used in CSS family

declaration
•  Once the browser

discovered a compatible
font it is used for rendering

•  Font origin != page origin
(font-kit, google fonts)

•  So could catch one from
malware.com too (XSS)

(c) 2011 Marc Schoenefeld

6

Fonts in browsers
(c) 2011 Marc Schoenefeld

7

The first discovery

•  Playing around with zzuf and pango-view
•  Displaying some unicode chars (parsing and rendering)
•  In a simple for loop

•  That manual approach brought up a memory lookup bug

(c) 2011 Marc Schoenefeld

8

The new threat model

•  Browsers delegate the font rendering work to the
underlying OS library, such as Pango

•  OS font libs are originally designed for the happy-go-
lucky cases, assuming local fonts are trusted

•  The threat model changed drastically with the release of
browsers that support web fonts (Firefox 3.6 , Chrome 5,
…),
•  Pango renders for FFx, 3.0.x => 3.6.x s/local/remote/
•  On OSX you have Apple Type Services, on Windows

ATMFD and Uniscribe
•  Browsers have to protect against direct attacks against os

libs, but we’ll see they don’t do a good job
•  First line of defence would be a sanitizer for rogue font

data (which can have bugs too), we’ll come back to that

(c) 2011 Marc Schoenefeld

9

GASP, CMAP, what‘s that ?
Learning about Fonts

•  Being not a font expert I learnt that all font formats are
Glyph data + meta data , stored in specific tables

•  Additional a good reference guide is invaluable :
•  Like “Fonts & Encodings” from Yannis Haralambous,
•  on over 1000 pages fonts every aspect of fonts is dissected

•  A great tool to explore fonts is the ttx tool set
•  http://sourceforge.net/projects/fonttools/files/
•  Written in Python, easily extensible, very helpful when

trying to fuzz only specific tag ranges

(c) 2011 Marc Schoenefeld

10

A font is more than just
vectors

]ttx –l CBM.ttf
Listing table info for ".//CBM.ttf":
 tag checksum length offset
 ---- ---------- ------- -------
 FFTM 0x48151085 28 11708
 OS/2 0x51e82100 86 376
 cmap 0x1d5eff85 330 864
 cvt 0x00440511 4 1196
 feat 0xc00e0454 44 11736
 gasp 0xfffe000f 8 11700
 glyf 0xef4054b9 8460 1592
 head 0xe961f826 54 252
 hhea 0x057a029b 36 308
 hmtx 0x1e9719cf 398 464
 loca 0x73577b9e 392 1200
 maxp 0x01080055 32 344
 morx 0x010ca7b3 368 11780
 name 0xe1407369 1168 10052
 post 0xaf11f0e6 480 11220

(c) 2011 Marc Schoenefeld

11

Fonts = more than just vectors
(c) 2011 Marc Schoenefeld

12

Tag Usage
OS/2 Metrics

CMAP char to glyph mapping
cvt Control Value table
feat Layout feature table
gasp Grid fitting and scan conversion
glyf Glyf outline table

Head Font header table
hhea Horizontal header table
fpgm Font program table (bytecode)
CFF Compact Font Program (bytecode)
[...]

Testing methodology

•  In order to automate font fuzzing we need the following:
•  A fuzzing engine
•  Dynamically Serve Content , generate font data on the fly

•  Browser integration
•  Start the browser in a subprocess for each test case
•  Run the fuzzer in an external CGI / JSP script
•  Run the fuzzer inside browser process

•  Structure awareness
•  Dumb fuzzing or
•  Ability to fuzz a certain structure (like the range of cmap only)

•  Crash analysis
•  Valgrind , Crashwrangler, !exploitable

(c) 2011 Marc Schoenefeld

13

Fuzzer generation zero

•  Jan / Feb 2010
•  Fuzzing Engine:
•  Dumb fuzzing with external zzuf process
•  Not structure aware

•  Browser integration:
•  Browser start for every iteration

•  Fuzzing method not structure aware
•  Summary:
•  Bjarne Stroustrup rule #1: Learn from the prototype, but throw it

away, so I did, because
•  terribly slow, hard to reproduce and continue interrupted
•  Missed a lot of cases due to caching effects

(c) 2011 Marc Schoenefeld

14

Engine: Role model Zzuf

•  Zzuf
•  Written by Sam Hocevar , released under the WTFPL
•  http://caca.zoy.org/attachment/wiki/zzuf/zzuf-20070225.pdf
•  Fine-granular control over fuzzing parameters

•  Zzuf supports flexible fuzzing parameter
•  Seed = The config param for the random generator (-s)
•  Ratio = The density of fuzzed bits within file (-r 0.001 = 0.1%)
•  Range = The fuzzed area within the file (--bytes = from – to)

•  zzuf code was used in the first iterations of the font fuzzer, but
later versions re-implemented the necessary parts in other
languages (Python, Java, JavaScript)

(c) 2011 Marc Schoenefeld

15

Fuzzer generation one

•  Around March 2010
•  Fuzzing Engine:
•  Server-based with Apache Tomcat,
•  Used a JSP to proxy calls to zzuf
•  structure awareness prepared via range support

•  Browser integration:
•  Browser calls JSP, refresh with updated seed
•  Utilize data URLs to prevent caching effects (Version 1.b)

•  Stroustrup rule #1: Learn from prototype, and throw away:
•  slow, hard to reproduce and continue interrupted
•  necessary to know tomcat internals to tweak performance

(c) 2011 Marc Schoenefeld

16

Fuzzer generation two

•  Around June 2010
•  Fuzzing Engine:
•  Server-based with python, using BaseHTTPServer
•  structure awareness via range support and ttx integration

•  Browser integration:
•  Browser calls python service, refresh with updated seed
•  Utilize data URLs to prevent caching effects
•  Export standalone reproducer

•  Stroustrup rule #1: Learn from prototype, and throw away:
•  Big minus, http interaction slows down business

(c) 2011 Marc Schoenefeld

17

Fuzzer generation two

•  Findings with Generation 2 fuzzer:
•  Google Chrome
•  Mozilla Firefox (& SeaMonkey)
•  Opera
•  Microsoft Uniscribe Processor
•  Microsoft Windows Kernel

(c) 2011 Marc Schoenefeld

18

 Chrome bugs

•  About Google Chrome and fonts:
•  Chrome comes with the Open Type Sanitizer since version

5, so blocks the most forged fonts not to touch the OS level
•  OTS has blind spots such as in the TTF Bytecode

sanitization
(http://code.google.com/p/ots/wiki/DesignDoc)

Strictly speaking the following bugs are no Chrome bugs,
•  Instead places where OTS allowed a malicious font hit a

vulnerable system library function

(c) 2011 Marc Schoenefeld

19

 Chrome bugs

•  July 2010, Chrome Bug #48283 (CVE-2010-2897)
•  Dumb fuzzing Chrome 5 with Generation 2 didn‘t result in many bugs on

OSX and Linux
•  Next step was with browsers inside a Windows XP/SP3, making sure

KB979559 font fix applied
•  After a longer fuzzing run , the machine suddenly rebooted,
•  a retry still did, so the bug looked stable

•  Google security team investigated this to be a bug in windows ATMFD
(Adobe Type Manager) stumbling over broken CFF table offset sizes
•  According to CFF spec only values 1, 2, 3, or 4 are allowed

•  To protect Chrome users from this windows bug , OTS in Chrome 6 was
hardened to catch b0rken offsets

•  Microsoft confirmed to fix at a later point in time (Dec 2010)

(c) 2011 Marc Schoenefeld

20

 Chrome bugs

•  August 2010, Chrome Bug #51070 (CVE-2010-3111)
•  After cr#48283 was fixed I went to verify with Generation 2
•  Tried some other fonts too on XP/SP3
•  And again, the machine rebooted, a either incomplete fix or new

bug
•  Same game: Google security team investigated this to be a

different bug
•  in windows ATMFD, having problems with malicious font

hinting code using an oversized stack
•  To protect Chrome users from this windows bug OTS was

hardened to block those malicious hinting information to harm
•  Microsoft confirmed to fix at a later point in time (Dec 2010)

(c) 2011 Marc Schoenefeld

21

 Firefox bugs

•  Firefox initially didn‘t come with OTS , so with a broken
font it was easy to hit the browser core or the underlying
system font lib

•  I (and most probably other researchers too) asked
Mozilla to address the problem on the root cause instead
of the instance level (hint hint OTS)

•  As a great leap for firefoxes the December 2010 update
(3.6.13) introduced OTS as an additional line of defence

(c) 2011 Marc Schoenefeld

22

 Firefox bugs

September 2010, Mozilla Bug #583520 (CVE-2010-2770)
•  Generation 2 was able to find real-life bugs, so I deferred

to throw it away, instead did more fuzzing runs
•  This time primarily on OSX
•  After a while crashwrangler reported a double-free issue
•  Firefox security team confirmed this to be an exploitable

bug and refined the patch over multiple iterations

(c) 2011 Marc Schoenefeld

23

Faulty glyph (id:38) outline detected - replacing with a space/null!
glyph - in memory font kind!
Fri Jul 30 12:20:24 maeckes2.local firefox-bin[10483] <Error>:!
CGBitmapContextInfoCreate: unable to allocate 10584 bytes for bitmap data!
objc[10483]: FREED(id): message autorelease sent to freed object=0x1f2de010!
!
[..]!
!
---!
exception=EXC_BAD_INSTRUCTION:signal=4:is_exploitable=yes:  
instruction_disassembly=:instruction_address=0x0000000097db24b4:  
access_type=:access_address=0x0000000000000000:!
Illegal instruction at 0x0000000097db24b4, probably a exploitable issue.!

 Firefox bugs

December 2010, Mozilla Bug #583520 (CVE-2010-3768)
•  I gave Generation 2 to Mozilla security team, they found out a

series of numerous other bugs
•  Additionally I reported the following ‘invalid write’ one:

•  And could not resist the following question:
•  “Is your future strategy to handle the font bugs case wise, or

probably introducing stricter acceptance rules via a (better be
sandboxed) font sanitizer ?”

•  Mozilla added protection by integrating OTS against malicious
fonts with MSFA-2010-78

(c) 2011 Marc Schoenefeld

24

exception=EXC_BAD_ACCESS:signal=11:is_exploitable=yes:instruction_disassemb
ly=movl %eax,(%esi):instruction_address=0x000000009011404d: access_type=  
write:access_address=0x00000000fedd02b4:!
Crash accessing invalid address. !

 Opera

•  In July 2010 Opera was informed of a rebooting crash
•  found with Generation 2
•  similar to the first Chrome crash mentioned earlier
•  Opera left the issue unpatched until Dec 2010, and released

a text-only bulletin ,
http://www.opera.com/support/kb/view/980/

•  Until today Opera still does not apply font sanitizing

(c) 2011 Marc Schoenefeld

25

 Safari

•  Mid of 2010, CVE-2010-1833
•  found with Generation 2
•  Viewing or downloading a document containing a

maliciously crafted embedded font may lead to arbitrary
code execution A memory corruption issue exists in Apple
Type Services' handling of embedded fonts.

•  Viewing or downloading a document containing a
maliciously crafted embedded font may lead to arbitrary
code execution. This issue is addressed through improved
bounds checking.

•  OTS is not included with Safari

(c) 2011 Marc Schoenefeld

26

Windows Uniscribe
Processor (Ffx & IE8)

•  September 2010, MS10-063, to fix CVE-2010-2738
•  Several fonts fuzzed with fuzzer Generation 2 caused the Uniscribe

Processor to fail in usp10.dll,
•  For one of those case !exploitable reported to be harmful
•  So the issue was then first reported to Mozilla and
•  Confirmed it was not a problem with Firefox using Uniscribe, rather an

inner Uniscribe processor
•  it could be later reproduced with an eot font on IE8, thx to taviso for

ttf2eot
•  In Sep 2010 (2 months after the report) Microsoft released an update
•  There still seem some NP-derefs with the original reproducer, but not

regarded as a security issue

(c) 2011 Marc Schoenefeld

27

ATMFD (Win Kernel)

•  December 2010, MS10-091 was released, to fix
CVE-2010-3956 and CVE-2010-3957

•  It took about half a year for the Chrome workarounds to
become obsolete
•  CVE-2010-3956 fixed the OpenType Font Index issue
•  CVE-2010-3957 fixed the OpenType Font Double Free bug

(c) 2011 Marc Schoenefeld

28

Fuzzer 3rd generation

•  Since Nov 2010, I am hacking on Generation 3
•  Switching to optional Lightweight web server (python

CGIHTTPServer)
•  Fuzzing engine is ported to javascript
•  DOM and CSS is updated on the fly
•  Fuzzed content replaced in <div> element, no page reload
•  Ability to dump simplified reproducer case
•  Ability to use different html templates (to test interaction

with CSS effects, shadows, text stroke, etc.)
•  Will be released under GPL soon

(c) 2011 Marc Schoenefeld

29

Font bugs in Flash

•  February 2011, APSB 11-02 was released, fixing
CVE-2010-0577
•  Fonts in Flash since the early days , DefineFont ,

DefineFont2 and DefineFont3 tags used flash-specific glyph
shape tables

•  Flash 10 introduced the DefineFont4 (id=91) tag , allowing
to embed complete Compact font file (CFF) structures

•  Used zzuf and my flash parser to go for range fuzzing

(c) 2011 Marc Schoenefeld

30

python parseflash.py clays/clay.swf | grep DefineFont!
115549:115555:137887:91:DefineFont4(10):22332:{'fontname':
'Windsong', 'reserved': 0, 'fontFlagsBold': 0, 'fontFlagsItalic':
0, 'fontdata': 'OTTO\x00\n\x00\x80\x00\x03\x00 CFF \x95\xa3B
\xb8\x00\x00\x00\xac\x00\x00N\xf0OS/2!

Resumee

•  The browers using OTS are more stable against broken
fonts (however still holes with TTF bytecode)

•  Dumb fuzzing still smart enough to find bugs in fontlibs
•  Not only browser core functionality affected
•  Fonts are in Flash, Shockwave, Java, PDF, etc. too

•  IE will fully join browser deathmatch with version 9
•  This research hasn’t covered mobile devices at all
•  Vendors should fix the non-security crashers too, to allow

better fuzzing without interruptions

(c) 2011 Marc Schoenefeld

31

Outlook

•  Be prepared for bugs in the next most vulnerable wave of
active content-types

•  We had graphics formats, we have/had fonts
•  Put your hope in the “functionality first” mentality of the

web , so my personal estimation is that WebGL and other
HTML5 gimmicks hold a large arsenal of exploitable
bugs

(c) 2011 Marc Schoenefeld

32

Random useful
references

•  http://www.adobe.com/content/dam/Adobe/en/devnet/
font/pdfs/5176.CFF.pdf The CFF specification

•  http://www.typetester.org/ Testing fonts
•  http://www.fontmaster.nl/pdf/OT_docs/

OT_Development.pdf Information about Font Rendering
Details

•  http://code.google.com/p/ots/wiki/DesignDoc OTS
Design information

(c) 2011 Marc Schoenefeld

33

Acknowledgements

•  Thanks for working with me, fixing the reported bugs:
•  Adobe PSIRT
•  Apple Security Team
•  Behdad Esfahbod (Pango project lead)
•  Chrome Security Team
•  Microsoft Security team
•  Mozilla Security Team
•  My colleagues at Red Hat Security Response Team
•  Opera Security Team

(c) 2011 Marc Schoenefeld

34

Questions ?

Marc /at/ illegalaccess /dot/ org
(c) 2011 Marc Schoenefeld

35

