
© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Practical Sandboxing on
the Windows Platform

An assessment of the Internet Explorer, Adobe
Reader and Google Chrome sandboxes

By Tom Keetch

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

About Me

• Verizon Business
– Lead consultant for Code Review in EMEA

• Previous Presentations
– OWASP AppSec EU 2011 – Practical Sandboxing with Chromium
– CONfidence 2011 - Assessing Practical Sandboxes (Updated)
– BlackHat Europe 2011 – Assessing Practical Sandboxes
– Hack.LU 2010 - Protected Mode Internet Explorer

• Exploit mitigations are my favourite topic!
–How to make exploits prohibitively expensive to find and exploit…

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Introduction

� What is Practical Sandboxing?
� User-mode sandboxing methodology
� Based on Windows OS facilities

� Overview of 3 implementations:
� Protected Mode Internet Explorer (limited)
� Adobe Reader X
� Chromium

� This presentation is about:
� Breaking out of such Sandboxes with the minimum
required effort.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Agenda

• Sandboxes for exploit mitigation (Theory)

• Overview of Practical Sandboxing
Implementations (Background)

• Sandboxing Flaws (Practical)

• A counter-argument to Adobe’s view of their
sandbox as an exploit mitigation (Argumentative)

• Conclusions

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Sandboxes for Exploit
Mitigation

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Sandboxes for exploit mitigation

� Two options for exploit mitigation:
� Increase cost of exploitation (DEP, ASLR)
� Decrease target value (Sandboxes)

� But a second stage exploit, can usually bypass the
sandbox for finite cost...

� This presentation focuses on sandbox-escape.

� Please read the whitepapers for more information.
� Too much to cover in just 1 hour
� Come talk to me after!

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

“Return-on-Exploitation”

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Two Potential Failures

1) The cost of bypassing the exploit mitigation is
too low to deter a potential attacker.
• Trivial to bypass?
• High Target Value?

2) The reduction of value of the target is not
sufficient to deter a potential attacker.
• Protecting the wrong assets?
• Some assets cannot be protected by a sandbox.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Looking for “cheap” exploits

� This research set out to find the easiest places to
find sandbox-escape exploits.

� Cheap-to-find exploit types were found:
� Previously unexposed interfaces
� Easily detectable (and exploitable) conditions
� Mostly due to incomplete sandbox implementations…
� … but also sandbox-specific issues.

� Also, resources not protected by sandbox:
� Network Access
� Resources protected by the Same Origin Policy
� Kernel Interfaces

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Overview of Practical
Sandbox Implementations

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

The Practical Sandboxing
Methodology

� Restricted Access token
� Deny-only SIDs (Discretionary)
� Low Integrity (Mandatory)
� Privilege Stripping (Capability)

� GUI Sub-System Security
� Window Station Isolation
� Desktop Isolation

� Job Object Restrictions

Each mitigates against a different attack!

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

• Session

• WinStation

• Desktop

• Medium Integrity

• Low Integrity

Browser Tab
(Internet Zone)

Browser Tab
(Trusted Zone,

Local Intranet Zone)

Internet Explorer
(Broker)

Protected Mode Internet Explorer

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Protected Mode Internet Explorer
Practical Sandboxing Check-list

OS Control Implemented?

Restricted Token

- Restricted Token No

- Privilege Stripping Yes

- Low Integrity Yes

Job Object Restrictions No

Window Station Isolation No

Desktop Isolation No

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Protected Mode Internet Explorer
Sandboxing

� Sandbox Limitations:
� Only supported on Vista and later, because only Integrity Levels are used.
� Only protected the Integrity of the system, not confidentiality.
� Full access to Windows station resources (including Clipboard, GAT).

� Many possible sandbox escape routes including:
� UAC Launches
� Trusted Broker attacks
� Generic PMIE bypass for a domain-joined workstation.

� More information previously presented at Hack.LU, O ct 2010.
� Not a Security Boundary, for many reasons.
� Lots of potential elevation routes.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

• Session

• Medium Integrity

• (Workstation)

• (Desktop)

• Restricted Token

• Low Integrity

• Job Object

PDF Renderer

Adobe Reader
(Broker)

Adobe Reader X

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Adobe Reader X
Practical Sandboxing Check-list

OS Control Implemented?

Restricted Token

- Restricted Token Yes

- Privilege Stripping Yes

- Low Integrity Yes

Job Object Restrictions Partial

Window Station Isolation No

Desktop Isolation No

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Adobe Reader X Sandboxing

� Makes use of Chromium sandboxing and IPC
framework (BSD license)

� PDF Rendering is sandboxed.

� Sandbox Limitations:
� The broker does not restrict read access.
� Sandbox doesn't protect user’s clipboard
� Full Access is granted to the Global Atom Table.
� “NT Authority\RESTRICTED” SID -> BNO Namespace squatting.

� No WinSta or Desktop isolation, but compensated
for with Job Object restrictions.

� Read Adobe Blog posts for more information.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

• Session

• Medium Integrity

• Restricted Token

• Low Integrity

• Job Object

Browser Tab

Google Chrome
(Broker)

GPU
Process

Plug-in

• Per plug-in

sandboxing.

Chromium

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Chromium
Practical Sandboxing Check-list

OS Control Implemented?*

Restricted Token

- Restricted Token Yes

- Privilege Stripping Yes

- Low Integrity Yes

Job Object Restrictions Yes

Window Station Isolation Yes

Desktop Isolation Yes

*Renderer sandbox.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Chromium sandboxing

� A flexible framework for applying the full
“practical sandboxing” methodology

� Renderer is in the most restrictive possible
sandbox.

� 3rd Party Plug-ins are often not sandboxed
� Shockwave, Java etc.

� Adobe Flash has a *limited* sandbox.

� GPU process is not sandboxed
(planned for future release)

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

The VUPEN Exploit (I)

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

The VUPEN Exploit (II)

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

The VUPEN Exploit (III)

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

The Adobe Flash Sandbox

OS Control Implemented?

Restricted Token

- Restricted Token Partial

- Privilege Stripping No

- Low Integrity No

Job Object Restrictions No

Window Station Isolation No

Desktop Isolation No

Bypass using “shatter attacks”!

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Cheap Exploit Vectors

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Cheap Exploit Vector #1

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

BNO Namespace Squatting

� Shared sections can be created with a name in the
'Local' namespace

� Shared Sections
� Mutexes, Events, Semaphores (Synchronisation objects)

� By “squatting” on named object, we can set
arbitrary permissions on the object if:

� It can be created before the application
� If the application does not fail if the named object already exists.
� If we know or can predict the name of the object.

� This can expose applications outside the sandbox
to attacks they never knew existed…

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

BNO Namespace Squatting –
PMIE Sandbox-Escape

1) Terminate the Medium IL iexplore.exe process.

2) Predict the PID of the new process.

3) Create the “ie_lcie_main_<pid>” shared section.

4) Initialise the section with malicious data.

5) When iexplore.exe initialises LCIE, malicious code
will execute outside of the sandbox.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

The Fuzzer that found it...

int _tmain(int argc, _TCHAR* argv[])

{

unsigned int size = _tstoi(argv[2]);

HANDLE hSection = CreateFileMapping(NULL, NULL, PAGE_EXECUTE_READWRITE, 0, size, argv[1]);

unsigned char* lpBuff = (unsigned char*) MapViewOfFile(hSection, FILE_MAP_WRITE | FILE_MAP_READ, 0, 0, size);

// Take a copy of the initial contents of the section.

memcpy(init, lpBuff, size);

while(1)

{

memcpy(lpBuff, init, sizeof(init));

for(unsigned int i = 32; i < size; i++)

if(rand() % 1000 < 5) lpBuff[i] = (unsigned char) rand();

PROCESS_INFORMATION ProcInfo1 = {0};

STARTUPINFOA StartupInfo1 = {0};

CreateProcessA(NULL, "C:\\Program Files\\Internet Explorer\\iexplore.exe", NULL, NULL, FALSE, 0, NULL, NULL,&StartupInfo1, &ProcInfo1);

CloseHandle(ProcInfo1.hProcess);

CloseHandle(ProcInfo1.hThread);

Sleep(2000);

PROCESS_INFORMATION ProcInfo2 = {0};

STARTUPINFOA StartupInfo2 = {0};

CreateProcessA(NULL, "pskill iexplore.exe", NULL, NULL, FALSE, 0, NULL, NULL, &StartupInfo2, &ProcInfo2);

CloseHandle(ProcInfo2.hProcess);

CloseHandle(ProcInfo2.hThread);

Sleep(1000);

}

return 0;

}

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

MSRC’s Response

“As we are able to reproduce the crashes I have
asked the Internet Explorer product team to
address this issue in a next release of IE, which
will most likely be IE10 rather than IE9 as that
version is pretty much complete”

…

“We decided to close the case because Protected
Mode IE is not presently a security boundary, thus
a sandbox escaping is not considered a security
vulnerability.”

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

BNO Namespace Squatting –
Other Practical Sandboxes

• Exploitable from Protected Mode IE
–Low Integrity only

• Exploitable from Adobe Reader X
–Process Token has “NT AUTHORITY\RESTRICTED”
–Grants access to create objects in Local BNO

•Not Exploitable from Chrome Renderer sandbox
–“Naked” Process Token.

•But if Microsoft won’t fix this bug until IE 10?
– How many more similar vulnerabilities are there?
– Adobe Reader and other incomplete implementations will remain
vulnerable to BNO Namespace Squatting issues.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Cheap Exploit #2

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

NPAPI Interface Exploits
(Chromium Specific)

� NPAPI was originally used to interface between
the Netscape browser and an in-process plug-in.

Browser

NPAPI Plug-in
(DLL)NPAPI

Process

Browser Tab

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Out-of-Process NPAPI

� Later NPAPI crossed process boundaries

� Improved stability, no improved security.

Browser Tab
(Process)

Google Chrome
(Broker Process)

Trusted
Plug-in

(Process)

NPAPI

Session

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

NPAPI In Chrome (Today)

Browser Tab
(Process)

Google Chrome
(Broker Process)

Trusted
Plug-in

(Process)

NPAPI

Sandbox

Session

• NPAPI now crosses a security boundary between
sandboxed tabs and un-sandboxed plug-ins.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

NPAPI Exploits

� NPAPI Callers were previously trusted...

� ...Now they are not.

� Flash and other plug-ins are currently not
securely sandboxed.

� Exploitable bugs in Adobe (and other vendors)
code will allow sandbox-escape.

� But these bugs were previously not vulnerabilities

→ Implicit Calling conventions?

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

A benign crash?

• Thread 9 *CRASHED* (EXCEPTION_ACCESS_VIOLATION @ 0x09ccf232)

0x102e5c06 [NPSWF32.dll - memcpy.asm:257] memcpy

0x102e1828 [NPSWF32.dll + 0x002e1828] CBitStream::Fill(unsigned char const*, int)

0x102e0b96 [NPSWF32.dll + 0x002e0b96] mp3decFill

0x102e0892 [NPSWF32.dll + 0x002e0892] PlatformMp3Decoder::Refill(int,unsigned char*)

0x10063d21 [NPSWF32.dll + 0x00063d21] CMp3Decomp::GetDecompressedData(short*,int,int,int,int)

0x10063f62 [NPSWF32.dll + 0x00063f62] CMp3Decomp::Decompress(short *,int)

0x100ad448 [NPSWF32.dll + 0x000ad448] CoreSoundMix::BuildBuffer(int)

0x100ae2c5 [NPSWF32.dll + 0x000ae2c5] CoreSoundMix::SendBuffer(int,int)

0x10153d6b [NPSWF32.dll + 0x00153d6b] PlatformSoundMix::SoundThread()

0x10154034 [NPSWF32.dll + 0x00154034] PlatformSoundMix::SoundThreadFunc(void *)

0x7c80b728 [kernel32.dll + 0x0000b728] BaseThreadStart

Full report @ http://crash/reportdetail?reportid=b370c132fc6587f7

Google Chrome 4.0.249.70 (Official Build 36218)

� This was found by accident (using Chromium)
� Fixed by Adobe!

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Input events

� Can also send key and mouse events.
� NPP_InputEvent().

� Possible to bypass Flash Security Dialogs
� Enable web-cam
� Enable Microphone

� Plug-ins are currently unable to distinguish
between user input and simulated input from
renderer.
� Hopefully this is fixed in “Pepper”.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Cheap Exploit #3

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Handle Leaks

� Handles which refer to privileged resources may
exist in sandboxes for several reasons.

� A handle can be used for any operation for which it
has already been granted access.

� If the right type of handle is leaked into the
sandbox, it can be used for sandbox-escape.

� These handles are easily detected at run-time!

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

What causes “Handle Leaks”?

� Deliberately granted by broker.

� Accidentally granted by broker.

� Incorrectly granted by broker (policy error)

� Unclosed handles from sandbox initialisation
� Before Lock-down (init. with unrestricted token)
� Internal handles kept open by libraries
� Internal handles kept open by 3rd Party Hook DLLs
� Libraries in use must be “sandbox friendly”

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Adobe Reader X Handle Leaks

� Sandboxed renderer has write access to the
Medium-integrity Internet Explorer cookie store,
history etc.

� The ARX broker also doesn't currently restrict read
access to local file system.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Cheap Exploit #4

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Clipboard Attacks

� In PMIE and AR-X, the clipboard is shared between
the sandbox and the rest of the user's session.

� Ever put your password in the clipboard?

� What about attacking other applications?

� Previously, the clipboard contents were normally
trustworthy, now they are not.

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Clipboard Attacks

� What about...

� Pasting malicious command lines into a shell followed
by a new line?

� Inputting maliciously formatted data into the
clipboard?

� Do application developers implicitly trust clipboard
contents?

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

A counter-argument to Adobe’s
view of the sandbox

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Conclusions

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Conclusions

� Developing sandbox escape exploits varies
considerably between different implementations

� Secondary (local) exploits cheaper to find and
develop than the primary (remote) exploit.

� Not necessarily a big disincentive for attackers.

� Especially if the goal is to steal a resource
available inside the sandbox!

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Relative Security of Sandbox Implementations

Google Chrome Renderer

Adobe Reader X

Protected Mode Internet Explorer

Google Chrome Flash Plug-in

Privilege Stripping

No Sandbox

More Protection

Less Protection

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Conclusions

� Sandboxes have changed the exploitation
landscape and will continue to do so
� Greater emphasis on local privilege escalation
� Desktop applications under greater scrutiny
� New attack surfaces

� When forced to attackers will start to adopt
sandbox-aware malware.
� Insufficient motivation to do so yet!
� PMIE sandbox escapes only started getting attention
when Pwn2Own made it a requirement of “own”.

� There are now at least 4 un-patched PMIE escapes
(source: Twitter).

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

Any Questions?

Twitter: @tkeetch

tom.keetch@uk.verizonbusiness.com

© 2009 Verizon. All Rights Reserved. PTEXXXXX XX/09

More information

• My OWASP AppSec EU Slides
– http://www.owasp.org/index.php/AppSecEU2011

• My Black Hat Briefings Europe 2011 Materials
– https://blackhat.com/html/bh-eu-11/bh-eu-11-archives.html#Keetch

• My Protected Mode IE Whitepaper
– http://www.verizonbusiness.com/resources/whitepapers/wp_escapingmicrosoftprotectedmodeinte

rnetexplorer_en_xg.pdf

• My Hack.LU 2010 Presentation on Protected Mode IE
– http://archive.hack.lu/2010/Keetch-Escaping-from-Protected-Mode-Internet-Explorer-slides.ppt

• Richard Johnson: “Adobe Reader X: A Castle Built on Sand”
– http://rjohnson.uninformed.org/Presentations/A%20Castle%20Made%20of%20Sand%20-

%20final.pdf

• Stephen Ridley: “Escaping the Sandbox”
– http://www.recon.cx/2010/slides/Escaping_The_Sandbox_Stephen_A_Ridley_2010.pdf

• Skywing: “Getting out of Jail: Escaping Internet Ex plorer Protected Mode”
– http://www.uninformed.org/?v=8&a=6&t=sumry

