
Win32 Exploit Development
with pvefindaddr

Peter Van Eeckhoutte – 2011

 Peter “corelanc0d3r” Van Eeckhoutte

 Corelan Team – www.corelan.be

@corelanc0d3r

 I’m not a
CISSP,CEH,MCSE,A+,OCSE,CCNA,SSCP,CIW,GIAC,R
SA/CSE,CCSA,CCSE,YMCA,CCSP,TICSA,TICSE,BIS,B
NS,PSP,NSCP,Security+,SCNP,SCNA

 I’m not Lulzsec or Anonymous either

But I am between you and the next 0xc0ff33 break !

http://www.corelan.be/

not enough

money

stress

flies by

universal

Photo : Image: dream designs / FreeDigitalPhotos.net

deadline
hard to manage

 Unless you are very fortunate...

25 hours of work
24 hours of time

 We all know what pain sounds like

 unbalance = more pain

 More pain = AAAAAAAAAAAAAAAAA...AAAAA

 Buffer overflow !

 Before going to work/school

– Launch your fuzzers

– Automated process

 When the fuzzer finds something

– A script evaluates the crash

– We get an email or twitter DM

– (We try to automate this)

 Our 1337 script turned the crashes into exploits

I wish

Writing the exploit usually
requires manual work

 Manual exploit development takes time

 We don’t have enough time

– Pentest => deadline

 Fast, reliable & efficient exploiting

=

more time for

the harder ones

Photo : Image: dream designs / FreeDigitalPhotos.net

 plenty of choice :

 ... I was still frustrated

 I wanted something different / better :

– A single plugin

– Immunity Debugger

– “Smart” & reliable

Statistics

Fiction

Facts

80% of the statistics is based on fiction, including this one

Pie charts

Look like a butt

Don't look like a
butt

 First version : sept 2009
 PyCommand for Immunity Debugger
 > 5000 lines of code
 Initially written to “find addresses”
 Run when debugger is attached to the application / at

crash time
 Don’t touch ImmDbg when it runs !
 Usage :

 http://redmine.corelan.be/projects/pvefindaddr

!pvefindaddr command [<parameters>]

http://redmine.corelan.be/projects/pvefindaddr

 find

 a

 p / p1 / p2

 xp / xp1 / xp2

 jseh

 j

 jp

 jo

 fa

 fd

 pdep

 depxp

 depwin2k3

 modules

 nosafeseh

 nosafesehaslr

 noaslr

 rop

 jrop

 ropcall

 findmsp

 pattern_create

 pattern_offset

 suggest

 compare

 assemble

 offset

 encode

 info

 Seeing = believing

 Saved Return Pointer overwrite

 EIP via function epilog : ESP points at payload

 “JMP ESP”

 In general, let’s assume we need to find a
pointer that jumps to a register

 Without pvefindaddr

– Use debugger built-in search

• Finds one pointer at a time, in the current module

– Use a command line tool

• Tell it what module to query

• If it supports regex, it might actually provide good results

– Use a plugin that will query one or all modules

• Lots of results, which one to pick ?

• Frustration when some/most of the pointers don’t work

 Issues
– We either have to select the modules to query, or we

simply can’t select them at all
– Why select modules ?

• ASLR (how to tell ?)
• Rebase : Often overlooked ! (how to tell ?)
• OS modules vs application modules

– Pointer properties
• What if we don’t want pointers with null bytes
• What if we want pointers that are ascii printable ?

– Packed modules vs out-of-debugger scripts

 If you use debugger search, you either are a ninja or
you are pushing your luck

 Other plugins are often outdated

Context = key

 pvefindaddr
– Will automatically filter out aslr & rebase modules

– Will indicate (or allow you to exclude) pointers that contain
null bytes

– Will indicate if a pointer consists of ascii bytes, etc

– Can ignore OS modules if you tell it to

– Writes results to log window & text file for future use (grep) -
http://sourceforge.net/projects/unxutils/

– Looks for bytes, not instructions

– Searches for
“jmp r32” / “call r32” / “push r32 + ret [offset]”

“mov r32b,r32 + jmp r32b / call r32b / push 32b + ret”

“push r32 + pop r32b + jmp r32b / call r32b / push r32b+ret”

Photo : Image: dream designs / FreeDigitalPhotos.net

!pvefindaddr j –r esp –n –o

http://sourceforge.net/projects/unxutils/

 Easy RM to MP3 Converter

 See exploit writing tutorial 1 on www.corelan.be

 Needs “jmp esp”

 Results

All modules App modules App modules
not rebased

App modules
not rebased, no nulls

Nr of pointers 235 94 5 1

http://www.corelan.be/

 Where should we put it ?

 Without pvefindaddr

–Create a cyclic pattern (metasploit tools)
./pattern_create.rb 10000 > /tmp/pattern10000.txt

– At crash time, find the offset
./pattern_offset.rb Df2D

2496

 Same behaviour with pvefindaddr :

!pvefindaddr pattern_create 10000

!pvefindaddr pattern_offset Df2D

 Once you have a crash with a cyclic pattern,
there’s much more you can do with it !

 Enumerate primitives before building an exploit !

!pvefindaddr findmsp

tip of the day : tell your fuzzer to use a cyclic pattern and
always run “findmsp” first at crash time

 Finds all cyclic pattern instances in memory

 See if a register is overwritten (+ show offset)

 See if a register points into a cyclic pattern (+
show offset)

 See if a SEH record is overwritten (+ show offset)

 See if there is a pointer into a pattern on the
stack

 Indicates if the found pattern is ‘normal’ or
‘unicode’

 Your buffer ends up overwriting an exception
handler structure on the stack

 You find a way to trigger an AV

 When the SE Handler kicks in, a pointer to nseh
is at ESP+8

 Common exploit technique : overwrite SE
Handler with a pointer to p/p/r

 We all know we should avoid using p/p/r from
safeseh protected modules

 Similar issues with some of the plugins
– First find non-safeseh protected modules yourself

– Query each one of them separately

– What about aslr & rebase ?

– What about pointer criteria ? (nulls, ascii, unicode)

– What about alternative routines ?
• add esp+8 / ret <+offset>

• call dword [ebp+offset]

 !pvefindaddr p
– Search in non-safeseh + non-aslr modules

 !pvefindaddr p1
– Search in non-safeseh + non-aslr + non-rebase modules

 !pvefindaddr p2
– Search in all modules

 !pvefindaddr a
– Search for add esp+8 / ret

 !pvefindaddr jseh
– Search for call dword [ebp+offset] (even outside of loaded modules !)

 Other options :
– -n : no null pointers
– -o : no OS modules
– -m modulename : only search in a given module

 3 steps to victory :

– Trigger a crash with cyclic pattern

– !pvefindaddr suggest

– pwn

 7-Technologies IGSS <= v9.00.00 b11063
IGSSdataServer.exe Stack Buffer Overflow

SCADA

Photo : Image: dream designs / FreeDigitalPhotos.net

 Requirement for reliable exploits
– Lottery-fu
– Guess... or
– Build accurate list (but can be very time consuming)

 Concept:
– Build array with all bytes [‘\x00’ -> ‘\xff’]
– Put array in payload and write it to a separate binary file
– At crash time, run !pvefindaddr compare <filename>
– Remove bad chars & try again (until array was found

unaltered in memory)

 Bonus : it will actually locate ALL instances of the
array.

 Unicode buffer:
– Not just inserting null byte, but result of conversion with a given

codepage
– Transforms

• Transform table well documented by FX (2004)
• Simply searching for 00xx00yy pointers is not enough

 Haven’t seen a lot of scripts that will handle the transforms
 Each pvefindaddr search will indicate unicode AND unicode

transforms
 Xion player : http://www.exploit-db.com/exploits/14517

– PoC posted on july 31st 2010, clear SEH overwrite
– Still no exploit after 2 weeks
– Wonder why ? 0 unicode pointers
– pvefindaddr found 3 transforms

• Example : 0x00470084 -> transformed to 0x0047201e -> p/p/r

– Exploit (aug 13, 2010) : http://www.exploit-db.com/exploits/14633/

http://www.exploit-db.com/exploits/14517
http://www.exploit-db.com/exploits/14517
http://www.exploit-db.com/exploits/14517
http://www.exploit-db.com/exploits/14633/
http://www.exploit-db.com/exploits/14633/
http://www.exploit-db.com/exploits/14633/

 Sure, the debugger has ‘find’ functionality

 pvefindaddr find nicely lists all locations at once

 Hint : looking for eggs ?

– !pvefindaddr find 77303074

– Can help you to tweak start location for hunter &
speed up the exploit

 Some ‘quickies’ :
– !pvefindaddr assemble ‚instruction#instruction‛

– !pvefindaddr offset <address> <address> (or reg)

• Will show distance

• Will generate code to jump the distance

– !pvefindaddr info <address>

– !pvefindaddr modules

– !pvefindaddr noaslr

– !pvefindaddr nosafeseh

– !pvefindaddr noaslrsafeseh

 pvefindaddr offers ways to avoid ASLR and safeseh... What about
Hardware DEP ?

 pvefindaddr ROP gadgets generator publicly available since mid june
2010 (publication of ROP tutorial).

 Happy Birthday pvefindaddr ROP gadget generator !
 Slow but accurate
 Finds gadgets up to 8 instructions by default (customizable)
 Finds gadgets with custom endings
 Has all the features of other commands (pointer properties, filter

ASLR/rebase automatically)
 Performs opcode splitting

– EB 58 C3 = JMP SHORT +0x58 / RETN
– 58 CE = POP EAX / RETN

 Check timeline of ROP exploits on exploit-db vs publication of tutorial &
pvefindaddr rop. Coincidence ?

 pvefindaddr will buy you time

– Finds accurate information

– Automates certain tasks

 Wim Remes taught us to visualize

Without pvefindaddr

motifake.com
winterparklodgingcompany.com

With pvefindaddr

Photo : Image: dream designs / FreeDigitalPhotos.net

Project Quebec

 pvefindaddr was never designed to do what it does today.
– Functionality was added over time
– No real functional design

• messy code, bad programming
• space indentation ? (headache++)
• Not a lot of interaction between the various functions

– Adding more features/functionality would only make things worse

 Everything works, but it’s very slow
– pvefindaddr first searches entire process memory, then filters

pointers afterwards
– Search uses immlib wrapper, which is suboptimal

 All output files are written into the Immunity folder
 Hard to exclude certain modules from searches
 etc

Photo : Image: dream designs / FreeDigitalPhotos.net

 Working Title for the project that resulted in a
full rewrite of pvefindaddr

 Design phase : feb 2011

 Development : march 2011 – today

 Plugin gets a new name, pvefindaddr is now
officially dead.

Photo : Image: dream designs / FreeDigitalPhotos.net

 Uses the same concepts as pvefindaddr

 Professionally re-designed from the ground up

 Corelan Team Project

Twitter

ekse @ekse0x

_sinn3r @_sinn3r

rick2600 @rick2600

lincoln

Acidgen @Acidgen

corelanc0d3r @corelanc0d3r

 Improvements
– Easier to pronounce

– “help” for each command

– Config file

– Global options

– Performance

– Better interaction between various functions and
classes

– Ruby output (Metasploit)

– etc

 !mona : show available commands

 !mona help <command> : show detailed info

•seh
•config
•jmp
•ropfunc
•rop
•stackpivot
•modules
•filecompare
•pattern_create
•pattern_offset

•find
•assemble
•info
•dump
•offset
•compare
•bp
•findmsp
•Suggest
•bytearray

•header
•getpc
•egg

 2 issues

– We needed a better way to store the output of
various commands

– We want to exclude certain modules from all
searches (shell extensions, VM guest additions, ...)

!mona config -set workingfolder c:\logs\%p

!mona config -set excluded_modules module.dll
!mona config –add excluded_modules module2.dll

 Options –n and –o still work

 We need more granularity

– -cm <option>=True/False

• safeseh

• aslr

• os

• rebase

– Example : find p/p/r in non-safeseh modules, but
don’t care about aslr :

• !mona seh –cm aslr=true

 Specify list of modules to query

-m ‚module1.dll,module2.dll,module3.dll‛

Wildcards :

*blah.dll | ends with blah.dll

blah* | starts with blah

blah | contains blah

 Pointers = data !

 Finding one pointer that meets certain criteria
might not be too bad

 Encoders usually take care of your shellcode

 ROP makes things harder

 Solution : -cp

 pvefindaddr had “no null bytes” and indicated if
a pointer is ascii and/or unicode

 -cp <option>,<option>
– nonull
– unicode (<- improved !)
– ascii
– asciiprint
– upper
– lower
– uppernum
– lowernum
– numeric
– alphanum
– startswithnull

 Bonus : -cpb <badchars>

 Just like with an encoder, you can specify a list of
badchars, this time for pointers

 Example : !mona seh –cpb ‘\x00\x0a\x0d\xff’

 pvefindaddr was a time saver
 mona : designed to be a lot faster

– Does not use immlib for searches
– It will filter during search, not after search
– Smarter

• Doesn’t search modules that don’t start with 00 if you are looking for
unicode or ‘startwithnull’ pointer

• etc

– You can specify the number of pointers to return
• Only need 5 pointers ? Use option –p 5

 Oh, did I mention it searches for more combinations ?
 Access Level

– -x <level>
– Levels : R,W,X,RW,RX,WX,RWX,*

16

102

720

1,6 5,8

72

0

100

200

300

400

500

600

700

800

"jmp esp" (no aslr, no
rebase, no OS)

"p/p/r" (no aslr, no
rebase, no safeseh)

"rop" (no aslr, no
rebase, no OS)

pvefindaddr

mona

Time to generate results, in seconds - App : 7T IGSSDataServer.exe

x 10 x 17 x 10

 ... leads to faster and better results

 ... and we like Metasploit

 IGSSDataServer.exe Demo 2

 “p2p”

 Imagine this :
– You control location referenced by ECX

• Flow :
– ECX -> EDI

– [EDI] -> ECX

– [ECX] -> EAX

– CALL [EAX+8]

– We need ptr -> ptr -> “jmp ecx”
 !mona find –type instr –s ‚jmp ecx‛ –p2p –m ntdll.dll

00344338 8BF9 MOV EDI,ECX
0034433A FF7424 04 PUSH DWORD PTR SS:[ESP+4]
0034433E 8B0F MOV ECX,DWORD PTR DS:[EDI]
00344340 8B01 MOV EAX,DWORD PTR DS:[ECX]
00344342 FF50 08 CALL DWORD PTR DS:[EAX+8] ; EIP

 bp

 filecompare

 egg

 bytearray

 header

 Feed it a file (binary, ascii, ...)

 More options

 Optional separate stackpivot search (min/max)

 Read from file(s)

 Generation process

Memory
(or files)

Gadgets

rop.txt

stackpivots

suggestions

ropfunc

Can we do it ?

 A few ways :

– Look for specific gadgets (fast)

– Gather gadgets first (slower)

 We prefer quality over speed

 Automation - Demo : Wireshark <= 1.4.4

!mona rop –m “libglib,libatk,libgdk-
win32,libgtk-win32”

 pvefindaddr is dead, long live mona !

 When can I haz teh mona ?

– Expected release : tomorrowz

– Follow me on twitter or keep an eye on
www.corelan.be

http://www.corelan.be/

Photo : Image: dream designs / FreeDigitalPhotos.net

Questions ?

