



### Presenter's bio

- French computer security engineer
- Main activities:
  - Penetration testing & security audits
  - Security trainings (EC-Council CEH, ECSA/LPT, CHFI, CEI certified)
  - Security research
- Main interests:
  - Security of protocols (authentication, cryptography, information leakage, zero-knowledge proofs...)
  - Number theory (integer factorization, primality tests, elliptic curves)







## What is clock-skewing?

- Also known as "clock skew" or "timing skew"
- Drift compared to the actual exact time
- Negative or positive skew
- Why is there a drift?
  - Software implementation of clock
  - Material imperfections (e.g. quartz fabrication)
  - Differences in wire lengths
  - Differences in input capacitance
  - Intermediate components

- ...



## **Basis** (1/2)

- The idea is to build a fingerprint from this drift
- Local or remote fingerprinting!
- Most important: correct time reference
- Then, target clock deviation measurements and clustering



## **Basis** (2/2)

"The more imprecise is your clock, the more precise will be your fingerprint!"







### How does a computer handle time?

- In fact, it has 2 different clocks:
  - An hardware clock called "RTC" (Real time clock), made of quartz, battery powered
  - A software clock ("system clock")
     handled by the OS kernel with a
     counter and interrupts (ticks)
- Under Linux & Windows:
  - Kernel synchronizes its software clock with RTC at boot time
  - RTC is almost never read after (even synchronizations are rare)



#### **Measurement mechanisms**

- First of all, we need the more precise local time for target drift measurement
- How to measure a clock?

Using a better clock!

- Better clocks:
  - Atomic clocks
  - GPS clocks (basically the same!)
  - Radio clocks (e.g. DCF77, TDF...)
- Typical atomic clock precision:
  - 1 s./3000 years
- Fortunately, atomic clocks can be queried using NTP protocol



#### **Correct time reference**

- Windows (S)NTP client can only guarantee 1-2 second precision
- We should better use Linux NTP client for measurement (10-30 ms precision!)



## A few words about NTP (1/3)

- NTP = Network Time Protocol
- Protocol for synchronizing the clock of computer systems
- One of the oldest internet protocols (September 1985)
- Works with UDP, port 123
- NTP only adjusts the system clock rate so that system clock match exact time
- Precision (at best):
  - 10 ms over Internet
  - 200 μs in LAN
- Common versions: NTP v3 (RFC 1305) & NTP v4



## A few words about NTP (2/3)

 NTP uses a hierarchical, layered system of levels of clock sources:





## A few words about NTP (3/3)



**U.S. Naval Observatory in Colorado (Stratum 0 source)** 





## Active measurement of the target (1/2)

- One can remotely query the time of a target using "ICMP Timestamp Requests" packets (ICMP Type 13 Code 0)
- Target replies with "ICMP Timestamp Replies" (ICMP Type 14 Code 0)
- Number of milliseconds since midnight (GMT Time)
- Generated from system clock

## Active measurement of the target (2/2)

```
[ ICMP ]###
type= timestamp-reply
code= 0
chksum= 0x7012
id = 0x0
seq = 0x0
ts ori= 12:19:17.427
ts rx= 12:47:39.852
ts tx= 12:47:39.852
```

**ICMP layer of an ICMP Timestamp Reply** 





### Passive measurement of the target (1/2)

- Or semi-active!
- Using TCP timestamps
- Proportional to uptime
- Generated from tick counter only
- Seems more accurate than ICMP timestamps



### Passive measurement of the target (2/2)

```
###[ TCP ]###
   sport= telnet
   dport= 56066
   seq= 2240595391L
   ack= 4265897507L
   dataofs= 8L
   reserved= 0L
   flags= PA
   window= 3032
   chksum= 0x7017
   urgptr= 0
   options= [('NOP', None), ('NOP', None), ('Timestamp', (2775749850L, 3584624))]
```

TCP layer of a "timestamp-enabled" TCP packet





## Precision & measurement resolution (1/3)

- We have to deal with 10ms of NTP precision and 30ms network latency
- According to Tadayoshi Kohno's study, average drift:
  - is stable on a given computer (+/- 1-2 ppm)
  - varies up to +/- 50 ppm
  - → This gives 4-6 bits of information



## Precision & measurement resolution (2/3)

 Least square fitting on the set of measurement points: {(local host time, target time difference)}



 Obviously, longer measurement = better precision



## Precision & measurement resolution (3/3)

- Enhancement: we can add an additional measurement dimension to fingerprint target clock precision: standard deviation around average slope (if network latency is nearly constant)
  - → adds 1-3 bits of information







### **Distinguishing devices**

- Using those 1 or 2-dimension measurements, we can easily define a distance measure between any 2 points
- Then, use any known multidimensional clustering algorithm:
  - Hierarchical algorithms
  - Partitional algorithms (e.g. k-means)
  - Density-based algorithms
- Ability to distinguish between about 2^(6+3)=512 different computers on Internet
- Can be combined with other fingerprinting techniques for better efficiency (OS TCP/IP fingerprinting, IP IDs, banners...)



#### Weaknesses

- Not so high resolution on Internet (need for longer measurement or additional characteristics)
- Sensitivity:
  - Temperature:+/- 1 ppm in typical computer temperature
  - Altitude
  - High computer activity:
     see known attacks on Tor anonymity network (ref. [1])





### Identification of stolen devices

- Compute the fingerprint of your computer in case you loose it
- You are now able to find it remotely among hundreds of similar computer (a lot easier on a LAN)...
- ... even if IP address / MAC address / hard drive was changed! (OS type shouldn't have been changed...)



### **Detection of remote virtual machines**

- If guest VMs are time-synchronized with host (option in most virtualization solutions), they will share a very similar fingerprint
- Otherwise, same guest OSes on the same host will have similar fingerprints



## **Computer forensics**

- These kinds of fingerprints can be computed offline
- Fingerprints computed from a short PCAP network capture done on a wellsynchronized computer
- Ability to fingerprint an attacker computer even if entire attack isn't completely recorded
- Compare attack fingerprint with suspected computer fingerprints





#### Countermeasures

- Frequent NTP synchronizations
- Disable:
  - TCP timestamps
  - ICMP or ICMP timestamp requests/replies
  - Any service delivering time (or just the time fonctionality, not the service!): e.g. Apache "Date" HTTP header
- Regularly change:
  - Your temperature
  - Your altitude
  - Your computer activity
  - Your processor & motherboard!





### Tool

- No tool seems to exist!
- Open source tool using Python & Scapy
- Very basic & naive tool for the moment
- "Quick and dirty" coded
- Tool will be published on Google Code just after the event
- Feel free to contribute & improve the tool!



## Live demo (1/2)

- Requirements:
  - Computers on a wired network
     (latency is too important on wireless
     networks):
     either TCP or ICMP-enabled
  - Some NTP servers for suitable time synchronization
  - Python & Scapy installed

# **Live demo (2/2)**









### References

- [1] Tadayoshi Kohno, Andre Broido, and K.C. Claffy, "Remote physical fingerprinting", IEEE Transactions on Dependable and Secure Computing, 2(2):93-108, 2005.
- [2] Talk "Fingerprinting hosts through clock skew", Steven Murdoch, EuroBSDCon, 2007
- [3] "NTP, une simple histoire de temps", GNU/Linux Magazine France, Diamond Editions, April 2010

