FPGA reverse-engineering challenge

Hackito Ergo Sum
Paris, April 8"-10" 2010

http://lekernel.net
http://www.hackitoergosum.org


http://lekernel.net/

FPGA security

Advertised by manufacturers
A design cannot be analyzed from the
programming file (bitstream)
Security features built on this assumption: anti
cloning, evaluation designs, ...



Why?

Bitstream format is proprietary and
undocumented
Even with understanding: analysis is difficult
No encryption! (in most cases)
Sounds like security through obscurity!
But it worked so far?!?



A little background...

* Most logic circuits (miCroprocessor cores, memory
controllers, accelerators, ...) are just an assembly of
combinatorial logic functions and flip-flops
(registers)

 An FPGA can be programmed indefinitely to
implement any of these circuits and connect it to the
outside world

How to build such a reconfigurable
device?



Building a reconfigurable architecture

e Memories (ROM, RAM, Flash, ...) basically map an
address to a word; for example address 0 maps to 3,
address 1 maps to 3, etc.

e If you put 0000 (0) on the address pins the output 1s
0101 (5). If you put 0001 (1), the output 1s 0011 (3).

e Let's implement combinatorial logic with memory!

* You can implement any function with n inputs and
m outputs with a ROM that has n address pins and m
data output pins.

e Such a ROM is called a look-up table (LUT)



0000 — 000
0001 — 001
0100 — 001
0101 — 010

2-bit adder in ROM

1101 — 100 ...

3

4 address lines
3 data lines
Capacity: 3*274=48 bits

Q2

ROM

Ql] QO

A+B

e [t's like the addition
tables of elementary
school...

e Similarly you can
implement AND, OR,
XOR, any combination
of them, etc.



What about the registers?

e Just connect them between some data and address
pins...

e This architecture could be as powertul as a FPGA!
Is 1t good?

Circuit
outputs

Register
bank




Building a microprocessor

e 8 8-bit registers, 16-bit address bus, 8-bit data bus

e Address lines: 8*8=64 register inputs, 8-bit data
input from the bus. Total 72.

e Data lines: 64 register outputs, 16-bit address, 8-bit
data output to the bus. Total 88.

e Required LUT capacity: 88*2772=47244640256TB
® 00pS...

* And a real processor 1s a LOT more complex than
this!



But what about simple functions?

 In the previous estimate, the main problem 1s the big
number of the address lines, 1.e. the big number of
inputs to the logic function in the LUT.

e Indeed, the LUT capacity grows exponentially with
the number of 1nputs.

* If we keep the number of inputs to the logic function
low (up to 6-7 1n practice), LUTs remain usable.



Combining LUTs together

A LUT with 4 input and 1 output (4-LUT) can be
used to implement any logic function of 4
parameters.

e It contains 16 bits of memory.

 How would you implement any function of 5
parameters using 4-LUTSs?



Shannon decomposition

eval(f, x1, x2, x3, x4, x5)
if(f = 1)
then return f£(1, x2, x3, x4, x5)

else return £(0, x2, x3, x4, x5)

f1(a, b, c, d) =1(1, a, b, ¢, d) and f2(a, b, c, d) = (0, a, b, ¢, d) are logic functions
of 4 parameters!

f(x1, x2, x3, x4) = (x1 & f1(x2, x3, x4)) | (~x1 & f2(x2, x3, x4)))
NEET S
e Two 4-LUT to implement f1 and f2

 One 4-LUT to implement the multiplexer



As a general rule...

Any logic function 1s implementable using LUTs
combined in this way

Is it efficient?

Let C(n) be the cost in 4-LUTs of a function with n
inputs

C(4) =1
C(n+1) = 2*C(n) + |

Exponential again!! Won't do better than the big
ROM...



But!

Some functions have better decomposition

Example: a 7-input AND can be built with two 4-
LUT only (instead of 15 using the previous method)

The output of a LUT can be the input of several
LUTs

There are many other possible optimizations

Complex problem, still a subject of research



LUT decomposition works in practice

e That's what FPGAs do to implement your logic
functions

e Heuristic optimization algorithms

* That's partly why your FPGA “compilations’ take
so long.

* In an FPGA the registers are distributed

 Each LUT has a D flip-flop at its output that can be
enabled or disabled



How many inputs should the LUTs
have?

e If the LUT has too few inputs, many of them will be
needed to implement a complex logic function

e If the LUT has too many inputs, 1t will be more
costly and a complex logic function could perhaps
be broken down into smaller LUTs with better
overall efficiency

e 4-LUT (Xilinx Virtex-4, Spartan-3, Altera Cyclone):
most simple and common type.



How are the LUTs connected together?

e Programmable interconnect provided by “switch
boxes” inside the FPGA




How is the design connected to the
outside world?

* Special FPGA cells are connected to the “telephone-
like” network and send the signal to the actual pin
on the chip

e Those are called “I/O cells”

e Each physical pin has its dedicated I/O cell which 1s
connected to the network




Summary




The build flow

The Verilog/VHDL files are read and compiled

The logic functions are broken down into LUTs and registers
connected together.

The output 1s called a technology-mapped netlist. 1t corresponds to the
phases of logic synthesis and mapping.

The LUTs are assigned physical locations on the chip. This is called
the placement phase.

Connections between LUTs are established through the switch boxes.
This 1s called the routing phase.

A binary file called the bitstream 1s generated, which contains the
contents of each LUT and the configuration of each switch box.

The bitstream 1s loaded into an FPGA device.



Enough theory...

* You know the basic theory behind the operation of
FPGAs.

e Xilinx provides a tool called “FPGA Editor” that
allows you to manually configure each of these
components on their chips.

e [ et's see how 1t works...



Resources

Icarus Verilog can do some synthesis, but does not work well.
http://www.1carus.com/eda/verilog

Place and route algorithm and open source implementation by
the university of Toronto:
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html

This tool lacks architecture data about real FPGAs.

Reverse engineering the Xilinx bitstream format (incomplete)
http://www.ulogic.org

FPGA Editor video tutorial
http://www .billauer.co.il/xilinx-fpga-editor-video-tutorial-
guide.html



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

