

FPGA reverse-engineering challenge

Hackito Ergo Sum
Paris, April 8th-10th 2010

http://lekernel.net
http://www.hackitoergosum.org

http://lekernel.net/

FPGA security

● Advertised by manufacturers
● A design cannot be analyzed from the

programming file (bitstream)
● Security features built on this assumption: anti

cloning, evaluation designs, ...

Why?

● Bitstream format is proprietary and
undocumented

● Even with understanding: analysis is difficult
● No encryption! (in most cases)

● Sounds like security through obscurity!
● But it worked so far?!?

A little background...

● Most logic circuits (microprocessor cores, memory
controllers, accelerators, …) are just an assembly of
combinatorial logic functions and flip-flops
(registers)

● An FPGA can be programmed indefinitely to
implement any of these circuits and connect it to the
outside world

How to build such a reconfigurable
device?

Building a reconfigurable architecture

● Memories (ROM, RAM, Flash, …) basically map an
address to a word; for example address 0 maps to 5,
address 1 maps to 3, etc.

● If you put 0000 (0) on the address pins the output is
0101 (5). If you put 0001 (1), the output is 0011 (3).

● Let's implement combinatorial logic with memory!
● You can implement any function with n inputs and

m outputs with a ROM that has n address pins and m
data output pins.

● Such a ROM is called a look-up table (LUT)

2-bit adder in ROM

● 0000 → 000

● 0001 → 001

● 0100 → 001

● 0101 → 010

● 1101 → 100 ...

● It's like the addition
tables of elementary
school...

● Similarly you can
implement AND, OR,
XOR, any combination
of them, etc.

What about the registers?

● Just connect them between some data and address
pins...

● This architecture could be as powerful as a FPGA!
Is it good?

Building a microprocessor

● 8 8-bit registers, 16-bit address bus, 8-bit data bus
● Address lines: 8*8=64 register inputs, 8-bit data

input from the bus. Total 72.
● Data lines: 64 register outputs, 16-bit address, 8-bit

data output to the bus. Total 88.
● Required LUT capacity: 88*2^72=47244640256TB
● oops...
● And a real processor is a LOT more complex than

this!

But what about simple functions?

● In the previous estimate, the main problem is the big
number of the address lines, i.e. the big number of
inputs to the logic function in the LUT.

● Indeed, the LUT capacity grows exponentially with
the number of inputs.

● If we keep the number of inputs to the logic function
low (up to 6-7 in practice), LUTs remain usable.

Combining LUTs together

● A LUT with 4 input and 1 output (4-LUT) can be
used to implement any logic function of 4
parameters.

● It contains 16 bits of memory.
● How would you implement any function of 5

parameters using 4-LUTs?

Shannon decomposition

eval(f, x1, x2, x3, x4, x5)

 if(f = 1)

 then return f(1, x2, x3, x4, x5)

 else return f(0, x2, x3, x4, x5)

f1(a, b, c, d) = f(1, a, b, c, d) and f2(a, b, c, d) = f(0, a, b, c, d) are logic functions
of 4 parameters!

f(x1, x2, x3, x4) = (x1 & f1(x2, x3, x4)) | (~x1 & f2(x2, x3, x4)))

Needs:

● Two 4-LUT to implement f1 and f2

● One 4-LUT to implement the multiplexer

As a general rule...

● Any logic function is implementable using LUTs
combined in this way

● Is it efficient?
● Let C(n) be the cost in 4-LUTs of a function with n

inputs
● C(4) = 1
● C(n+1) = 2*C(n) + 1
● Exponential again!! Won't do better than the big

ROM...

But!

● Some functions have better decomposition
● Example: a 7-input AND can be built with two 4-

LUT only (instead of 15 using the previous method)
● The output of a LUT can be the input of several

LUTs
● There are many other possible optimizations
● Complex problem, still a subject of research

LUT decomposition works in practice

● That's what FPGAs do to implement your logic
functions

● Heuristic optimization algorithms
● That's partly why your FPGA “compilations” take

so long.
● In an FPGA the registers are distributed
● Each LUT has a D flip-flop at its output that can be

enabled or disabled

How many inputs should the LUTs
have?

● If the LUT has too few inputs, many of them will be
needed to implement a complex logic function

● If the LUT has too many inputs, it will be more
costly and a complex logic function could perhaps
be broken down into smaller LUTs with better
overall efficiency

● 4-LUT (Xilinx Virtex-4, Spartan-3, Altera Cyclone):
most simple and common type.

How are the LUTs connected together?

● Programmable interconnect provided by “switch
boxes” inside the FPGA

● Similar to a telephone network with switchboards

How is the design connected to the
outside world?

● Special FPGA cells are connected to the “telephone-
like” network and send the signal to the actual pin
on the chip

● Those are called “I/O cells”
● Each physical pin has its dedicated I/O cell which is

connected to the network

Summary

The build flow

● The Verilog/VHDL files are read and compiled

● The logic functions are broken down into LUTs and registers
connected together.

● The output is called a technology-mapped netlist. It corresponds to the
phases of logic synthesis and mapping.

● The LUTs are assigned physical locations on the chip. This is called
the placement phase.

● Connections between LUTs are established through the switch boxes.
This is called the routing phase.

● A binary file called the bitstream is generated, which contains the
contents of each LUT and the configuration of each switch box.

● The bitstream is loaded into an FPGA device.

Enough theory...

● You know the basic theory behind the operation of
FPGAs.

● Xilinx provides a tool called “FPGA Editor” that
allows you to manually configure each of these
components on their chips.

● Let's see how it works...

Resources

● Icarus Verilog can do some synthesis, but does not work well.
http://www.icarus.com/eda/verilog

● Place and route algorithm and open source implementation by
the university of Toronto:
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html

This tool lacks architecture data about real FPGAs.

● Reverse engineering the Xilinx bitstream format (incomplete)
http://www.ulogic.org

● FPGA Editor video tutorial
http://www.billauer.co.il/xilinx-fpga-editor-video-tutorial-
guide.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

