The Evolution of Microsoft’s
Exploit Mitigations

Past, Present, and Future

Tim Burrell
tim.burrell@microsoft.com
Microsoft Security Engineering Center (MSEC)
Security Science

Credits

e Peter Beck, Matt Miller (MSEC)
* Louis Lafreniere (Compiler team)

* Many others in these teams who helped along
the way

Agenda

* Defining the purpose of exploit mitigations

* Microsoft’s exploit mitigation evolution
— The past

— The present/future
* Windows7
* Visual Studio 2010

The purpose of exploit mitigations

1
Probability of Exploitation
successful technique
exploitation Mitigation
. . technique
(exploitability) g
0
Effective Ineffective

Effectiveness

Goal: decrease the probability of successful exploitation
— Prevent the use of specific exploitation techniques
— Reduce the reliability of exploitation techniques

* Generic protection for known & unknown vulnerabilities in all
products, not just Microsoft products!

THE PAST

Pre-XP SP2:
The era of uninhibited worms

Exploitation

* Reliable exploitation techniques already existed
— And they affected Windows, too!

* Exploits were developed, worms raged
— Jul, 2000: IIS Code Red (MS01-033)
— Jan, 2003: SQL Slammer (MS02-039)
— Aug, 2003: Blaster (MS03-026)
— May, 2004: Sasser (MS04-011)

* No platform exploit mitigations existed
— Attack surface was very big
— Exploitation techniques were uninhibited

SEEEN Same techniques, different OS

e Stack: return address overwrite zicpnos;

Stack - Local variables S Retug Parameters
Layout EBP address
- — Buffer overrun >
Exploit 4 Padding Address of Shellcode
Buffer jmp esp

* Heap: free chunk unlinkso1z:00, maxx01, anono1;

Heap
Layout Heap chunk Heap chunk | Heap chunk Heap chunk
- — Buffer overrun >
Exploit . Free chunk What Where
Buffer | Padding header address address ShElleele’s

Fake chunk

G \/isual Studio 2002

e GS vl released

D
[Buffer overrun ‘)

Local variables Ee Sale Retug Parameters
Cookie EBP address

Lower addresses <€ —> Higher addresses

* Behavior
— Compiler heuristics identify at-risk functions
— Prologue inserts cookie into stack frame
— Epilogue checks cookie & terminates on mismatch

Exploitation

GS v1 weaknesses

* Adjacent local/parameter overwrite ze-oz:

vold vulnerable (char *in) {

int unsafe = 0;

strcpy (buf, in);

if (unsafe != 0)

return;

char buf[256];

DoSomethingUnsafe () ;

< overflow!
< unsafe is corrupt
< GS cookie checked

 SEH overwrite bypasSititcnric1do3;
Normal SEH Chain

_

N H
\ V. J/
(Y
N H
. V. J/
.
OxfEEEEEEE

—>

—>

app!_except handler4

J/

k32! except handler4

Corrupt SEH Chain

0x7cl408ac

JEE g

]

. O eax
[jmp +6] ool

op eax
0x414106eb sek
ret

G \/isual Studio 2003

e GSv1.1 released with VS2003

N
[Buffer overrun ‘)
Other local Buffer local GS Saved Return Parameters
variables variables Cookie EBP address
Lower addresses <€ —> Higher addresses

e SafeSEH added, reliant on XP+ & recompile

Safe SEH Handler SafeSEH Table Invalid SEH Handler

[app!_except handler4 } app'!ehl [app! main+0xlc }

S h Y /
?
app! except handler4 .

Valid Not found in table

Exploitation Safes E H eva S i O n S

e Limitations of SafeSEH

— Handler can be in an executable non-image region
— Handler can be inside a binary lacking SafeSEH

Process heap

Compiled with
/SAFESEH

Not compiled
With /SAFESEH

random.dll

U \Windows XP SP2 arrives

e System binaries built with GS v1.1 & SafeSEH

e Data Execution Prevention (DEP)
— Hardware-enforced non-executable pages
— Software-enforced SEH handler validation

Stack _J Local variables e Return Parameters Stack, heap,
Layout EBP address and other
' | Buffer overrun > .
regions are now
Exploit . Address of
Buffer | Padding S oo Shellcode non-executable

U \Windows XP SP2 arrives

* First round of heap mitigations
— Safe unlinking (E->B->F == E->F->B == E)
— Heap header cookie validation

* Limited randomization of PEB/TEB
— Reduces the reliability of certain techniques

* Pointer encoding
— Protect UEF, VEH, and others via EncodeSystemPointer

Exploitation Same NX bypaSS’ neW OS

e Return to libCisoizaro7,vergaton;

Stack 4 Local Saved Return A .
Layout Variables EBP address rguments
r Buffer overrun >
Exploit Address Fake Address
I Padding of Return of
Buffer system Address “cmd”

* Many variations
— Return into VirtualProtect/VirtualAlloc
— Disable DEP via ProcessExecuteFlags skapeos;
— Create executable heap & migrate to it
— Return-oriented programmingshachamos]

SRR New heap techniques, less universal

* Unsafe lookaside list allocations a.is:movos, conoveroa—2;
— QOverwrite free chunk on lookaside list & then cause allocation

Unsafe unlinking of free chunks conoveros—2
— Overwrite free chunk with specific Flink and Blink values

Unsafe unlink via Rt 1DeleteCriticalSection raiiiereos,
— Overwrite critical section structure on heap & delete it

EXplOltlng Freel.ist [O] [Moore05]
— Overwrite free chunk stored at Freelist[0] with specific data

G \/isual Studio 2005

e GSv2 released with VS2005

— Shadow copy of parameters is made
— Strict GS pragma

N

Other local [Buffer overrun ‘)
iabl
van;b €s Buffer local GS Saved Return Parameters
variables Cookie EBP address (Not used if unsafe)
Shadowed
parameters
Lower addresses <€ > Higher addresses

 CH+ operator::new integer overflow detection (zowarao;

U \Windows Vista arrives

e Address Space Layout Randomization (ASLR) (zaxoz;

— Make the address space unpredictable

Boot 1 Boot 2 Boot 3
gu—
/ i kernel32.dll
/>[app.exe
process user32.dll //
address = \ < |
space kernel32.dlI e
user32.dll
ntdll.dll kernel32.dlI
.
Region Entropy
Image 8 bits
Heap 5 bits

Stack 14 bits

U \Windows Vista arrives

e Second round of heap mitigations arinescuos)

— Removal of lookaside lists and array lists

— Block metadata encryption

— Header cookie scope extended, validated in more places
— Dynamic change of heap allocation algorithms (LFH)

— Terminate on heap corruption (default for system apps)

— RtlDeleteCriticalSection technique mitigated by
RtlSafeRemoveEntrylList

— FreelList [0] technique mitigated by
RtlpFastRemoveFreeBlock

ZEEE Same ASLR evasions, new OS

Partial address overwrite buraenoz;
-~ N

memcpy (
Local Saved Return dest, < Stack buf
Variables EBP address src, <& Controlled

Buffer ove length); < Controlled

Address information disclosure soeaeros

Reduced entropy on some platforms i tenouseor
Brute forCing[NergalOl,DurdenOZ,Shacham04]
Non-relocateable/predictable addresses sot:rovos:

Newer heap techniques,
xploitation
partial & still less universal

e HEAP structure overwrite rzawresos:

— Overwrite pointer in alloc’d chunk with heap base
— Cause pointer to be freed & then re-allocated
— Overwrite with specially crafted HEAP structure

* LFH bucket/header overflow rsawxesos:

e Still need to evade DEP and ASLR if enabled

Windows Vista SP1 and
Windows Server 2008 RTM

e SEH Overwrite Protection (SEHOP)
— Dynamic SEH chain validation
— GS+SEHOP = robust mitigation for most stack buffer overruns!

Mitigation

Valid SEH Chain Invalid SEH Chain

N H —)[app!_except_handler4] q N I H]—)[app!_main+0x1c]

N H —)[k32!_except_handler4]

0x41414141]

I
N H > ntdll!FinalExceptionHandler : Can’t reach validation frame!

* Kernel mode ASLR
— NT/HAL (5 bits of entropy)
— Drivers (4 bits of entropy)

Exploit Mitigations Timeline

Stack /GS 1.0 |I /GS 1.1 /GS 2.0 | EH4 SEHOP
Heap Heap 1.0 Heap 2.0 | HeapTerm

Code DEP /NXCOMPAT ASLR DEP + ATL

Execution

2003 2004 2005 2006 2007 2008

THE PRESENT

Ui Evolution of OS mitigations

* XPSP2

— GS applies to both kernel and user mode

— Heap mitigations are user mode only
* Vista: DEP + ASLR

— Significantly increase difficulty of user mode
exploitation

e Windows 7

— Further improve kernel mode mitigations

gl Pool Overruns

* Very similar to Heap Overruns
* Allow arbitrary write what/where via unlink
* Occurs when

— Merging adjacent free chunks
— Removing chunk from ListHead

Pool Pool chunk Pool chunk Pool chunk Pool chunk
Layout
=
Exploit . Free chunk What Where
Buffer n setelellnt header address address Shellcode

Fake chunk

Safe unlinking

* Checks integrity of LIST ENTRY structure
(E->B->F == E->F->B == E)

e XPSP2 added this check in Heap

e Windows 7 RC has check in Kernel Pool
— Free as well as Checked builds

2 Safe Unlinking - benefits

* Security
— Mitigates arbitrary writes via unlink
— Other exploit vectors far less generic
* Reliability
— Detects corruption as early as possible
— Bugchecks with unique code (0x19, 3, ...)

Safe Unlinking - costs

* Performance
— Doesn’t hit performance measurably
— A few extra instructions
— No additional paging
 Compatibility

— Pool corruption always bad, no exceptions

MSO08-001 IGMP Pool Overrun

* Pool overrun in tcpip.sys [Kortchinsky08]

* Root cause is arithmetic overflow in buffer size
calculation

— One loop counts entries using a 16-bit counter
— Counter wraps around past 65535

— Memory is allocated based on counter

— A different loop copies entries into buffer

el VSO08-001 IGMP Pool Overrun

UINT16 SourceCount = 0;
for (...)
{

1f (...) SourceCount++;

RecordEntry = ExAllocatePoolWithTag (
NonPagedPool,
HeaderSize + (AddressBytes * SourceCount),

IpGenericPoolTagqg) ;

MSO08-001 IGMP Pool Overrun

Sourcelist = RecordEntry + HeaderSize;

for (...)
{
1f (...){
Rt1CopyMemory (
Sourceliist,

4
AddressBytes) ;
Sourcelist += AddressBytes;

Pool Mitigations

e Safe unlinking prevents all current variants of
documented pool overrun exploits
* “Makes it immeasurably harder to exploit”
— We’re not saying impossible
— Also mitigates MS07-017, MS08-001, MS08-007
* Only safe unlinking right now

— No pointer encoding, cookies etc
— No protection of LookAside lists

Uil Other enhancements

* Increased entropy for kernel mode ASLR
— Drivers: 6 bits on x86, 8 bits on x64

THE FUTURE

GS — effective or not?

* Vista
— GS fundamentally the same

— Many bypasses closed off via OS improvements
* EH abuse
 NX/DEP
* ASLR

* Vista released worldwide 30t January 2007

e MS07-017 security bulletin 10t April 2007
— Trivially exploitable stack overflow in ANI file parsing

Mitigation The GS heuristic

* Not all functions GS-protected
— Obvious and less obvious performance cost

* |nsert cookie for
— arrays of size>4 with element size <= 2 (char/wchar)
— Structures containing arrays with element size <=2

* Originally designed to mitigate overflows arising
from untrusted string data

Lol VIS07-017 — ANI stack overflow

* The target of the overflow was a ANIHEADER structure
on the stack:

typedef struct ANIHEADER {
DWORD cbSizeof;
DWORD cFrames;
DWORD cSteps;
DWORD c¢x, cvy;
DWORD cBitCount, cPlanes;
DWORD jifRate;
DWORD f£1; } ANIHEADER, *PANIHEADER;

MSO07-017 — ANI stack overflow

 The ANIHEADER overflow equivalent to:

ANIHEADER myANTheader;

memcpy (&myANITheader,
untrustedFileData->headerdata,
untrustedFileData->headerlength) ;

* No character buffers on the stack
—>No GS protection
=>myANIlheader is being treated like a character buffer

Target buffer mitigated by GS?

Security bulletin__6s?)

MS03-026 (Blaster) Yes

MS06-040 Yes

MS07-029 Yes

MS04-035 (Exchange) No DWORD array
MS06-054 (.PUB) No structure populated from file

MS07-017 (.ANI) No structure populated from file

Vista SP1

* |[n development at time of ANI vulnerability
* Hpragma strict_gs check?

* More aggressive GS heuristic

 Much more aggressive GS heuristic

* Any address-taken local variable is considered
a potential target!

strict GS

Target buffer mitigated by GS?

Security bulletin_Legacy 65| ______|Strict GS

MS03-026 (Blaster)

MS06-040 .
MS07-029 .
MS04-035 (Exchange) No DWORD array
MS06-054 (.PUB) No Data structure

MS07-017 (AN|) No Data structure

strict GS

#pragma strict_gs_check(on)
void main()

{

Int i;

printf(“%d”, (int) &i); // address-taken

Mitigation StriCt GS

* Applied in a very targeted way for Vista SP1

Binary Functions in Number of |% protected Factor
cookies functions increase

Vista RTM (GS) 3.80%
gasf.dll 1526
Vista SP1 (strict GS) 202 13%
Vista RTM (GS) 40 8.10%
avifil32.dll 494 3.4
Vista SP1 (strict GS) 134 27%
Vista RTM (GS) 40 2.70%
WMASE.dII 1484 13.1
Vista SP1 (strict GS) 524 35%

* But not suitable for system-wide deployment
—>GS++

Issues of scale

' Vista SP1 approach was targeted

Can we make the

default /GS
better?

Enhancing GS

P"I * Increased coverage
— Protect more stuff

* Smarter coverage
— Don’t protect where it's unnecessary

* Different models for how this might
work

Vitigation GS++ heuristic ?

e All arrays? Performance concerns!

e All structures?

What subset is most likely to contain
untrusted data?

GS++ heuristic

Arrays where element type not of pointer type:

¢ | char myButf[]
¢ | DWORD myBuf []
& | HANDLE myBuf[]

and size of array is >2 elements

Mitigaior GS++ heuristic

 Structures:

¢ |— Containing an array where element type is not of
pointer type.

¢ |— Made up of pure data: &
) struct _ANIHEADERN
* No members of pointer type O E L
* >8 bytes in size DWORD cFrames;
DWORD cSteps;
 Default constructor/destructor DWORD cx, cy;

DWORD cBitCount
DWORD cPlanes;
DWORD jifRate;

\DWORD £1; }; /

Impact on cookie count

GS-protected functions in sample code

- Original GS VS2010 GS

User/client 9608 12846
Kernel 2361 4686
User/client o o
(% total fns) 0.0% 8.0%
Kernel mode s 50 10.4%

(% total fns)

—Cookie increase between 2% and 5%

Mitigation GS optlmlzathn

* No GS cookies when usage is provably safe

. STDAPI ConsumeData(BYTE *pbData)

{
BYTE Temp[MAX];

if (pbData)
{

memcpy (Temp, pbData, ARRAYSIZE(Temp));

Mitigation GS optlmlzathn

* No GS cookies when usage is provably safe

. STDAPI FillBuffer(wchar_t *pBuf, int count)
{

memcpy (pBuf, GetData(), count*sizeof(wchar_t));

}
STDAPI ParseData()

{
wchar_t buffer[BUF _SIZE];

FillBuffer(buffer, countof(buffer));

Uil GS enhancements [VS2010]

 GS heuristic

— Identify more
potential hazards

* GS optimization

— Some potential hazards
turn out to be safe

Increased scope of heuristic:

Impact on cookie count

. VS2010 GS
- Original GS | VS2010 GS [with GS opt]

User/client 9608 12846 11654
Kernel 2361 4686 3909
User/client o, 8.0% 7.3%

(% total fns)
Kernel mode

o, o o
(% total fns) 5.2% 10.4% 8.7%

Impact on stack overflow
IIga 1onN
security bulletins

Security bulletin Orlgmal GS VSZOlO GS m

MS03-026 (Blaster) Yes
MS06-040 . Yes
MS07-029 Yes Yes
MS04-035 (Exchange) No Yes
MS06-054 (.PUB) No Yes
MS07-017 (.ANI) No Yes

... but GS not a panacea

Security bulletin Orlgmal GS VSZOlO GS m

MS03-026 (Blaster)

MS06-040 .
MS07-029 Yes
MS04-035 (Exchange) No
MS06-054 (.PUB) No
MS07-017 (.ANI) No
MS08-072 N/A N/A
MS08-067 N/A N/A N/A

Mitigation

Still need to write secure code!

* Even the new heuristic will not cover all cases

* GS does not apply to some types of stack-
based attacks (for example underflow).

Local Saved | Return Local GS Saved | Return
Variables | EBP | address | Args cee Variables | Cookie | EBP | address | Args
< 0x41414141 ..
CALLEE CALLER
<

Stack grows toward lower addresses

Enhanced GS

* |n Visual Studio 2010

— Same /GS switch
— Enhanced GS++ heuristic

— GS optimization

Conclusion

* Modern exploitation is difficult & not universal
— Techniques are tied to specific vulnerability scenarios

e Gaps do exist that can make exploitation easier
— But these are the exception, not the rule

* We are committed to protecting our customers
— Continued improvement of our mitigation technology
— Providing actionable exploitability data with bulletins

Questions?

Thank you!

e Security Science at Microsoft

— http://www.microsoft.com/security/msec/default.aspx

e Security Research & Defense blog
— http://blogs.technet.com/swi/default.aspx

http://www.microsoft.com/security/msec/default.aspx
http://blogs.technet.com/swi/default.aspx

References

[Aelph96] Alephl. Smashing the stack for fun and profit. Phrack 49. Nov, 1996.

[Solar97] Solar Designer. Getting around non-executable stack (and fix). Bugtraq. Aug, 1997.

[Solar00] Solar Designer. JPEG COM Marker Processing Vulnerability in Netscape Browsers. Bugtrag. Jul, 2000.
[Maxx01] MaXX. Vudo malloc tricks. Phrack 57. Aug, 2001.

[Anon01] Anonymous. Once upon a free(). Phrack 57. Aug, 2001.

[Nergal01] Nergal. Advanced return-into-libc exploits (PaX case study). Phrack 58. Dec, 2001.

[Ren02] Chris Ren, Michael Weber, and Gary McGraw. Microsoft Compiler Flaw Technical Note. Feb, 2002.
[Durden02] Tyler Durden. Bypassing PaX ASLR Protection. Phrack 59. Jul, 2002.

[PaX02] PaX Team. Address space layout randomization. 2002.

[Litchfield03] David Litchfield. Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft Windows 2003 Server. Sep, 2003.
[Anisimov04] Alexander Anisimov. Defeating Microsoft Windows XP SP2 Heap protection. 2004.

[Conover04] Matt Conover, Oded Horovitz. Reliable Windows Heap Exploits. CanSecWest. 2004.

[Conover04-2] Matt Conover. Windows Heap Exploitation (Win2KSPO through WinXPSP2). SyScan. 2004.
[Litchfield04] David Litchfield. Windows Heap Overflows. Black Hat USA. 2004.

[Falliere05] Nicolas Falliere. A new way to bypass Windows heap protections. Sep, 2005.

[Skape05] Skape, Skywing. Bypassing Windows Hardware-enforced DEP. Uninformed. Sep, 2005.

[Nagy05] Ben Nagy. Beyond NX: an attacker’s guide to Windows anti-exploitation technology. PakCon. Oct, 2005.
[Moore05] Brett Moore. Exploiting FreeList[0] on Windows XP Service Pack 2. Dec, 2005.

[Marinescu06] Adrian Marinescu. Windows Vista Heap Management Enhancements. Black Hat USA. Aug, 2006.

References

[Skape06] Skape. Preventing the Exploitation of SEH Overwrites. Uninformed. Sep, 2006.

[Soeder06] Derek Soeder. Memory Retrieval Vulnerabilities. Oct, 2006.

[Howard07] Michael Howard. Why Windows Vista is unaffected by the VML Bug. Jan, 2007.

[Sotirov07] Alexander Sotirov. Windows ANI header buffer overflow. Mar, 2007.

[Waisman07] Nicolas Waisman. Understanding and Bypassing Windows Heap Protection. Jul, 2007.
[Whitehouse07] Ollie Whitehouse. GS and ASLR in Windows Vista. Black Hat USA. Aug, 2007.

[Dowd08] Mark Dowd. Application-specific attacks: Leveraging the ActionScript Virtual Machine. Apr, 2008.
[Lawrence08] Eric Lawrence. |E8 Security Part I: DEP/NX Memory Protection. Apr, 2008.

[Sotirov08] Alexander Sotirov and Mark Dowd. Bypassing Browser Memory Protections. Black Hat USA. Aug, 2008.
[Hawkes08] Ben Hawkes. Attacking the Vista Heap. Black Hat USA. Aug, 2008.

[Shacham08] Hovav Shacham. Return-Oriented Programming. Exploits Without Code Injection. Black Hat USA. Aug, 2008.
[Alberts09] Bas Alberts. A bounds check on the exploitability index. Feb, 2009.

[Korthcinsky08] Kostya Kortchinsky. Real World Kernel Pool Exploitation, SyScan 08 Hong Kong

