
Hacking Android for
fun & profit

Nuit du Hack 2011

2

Plan (1/3)

Android System
☞ Features
☞ Permissions
☞ API & SDK
☞ Debugging mode

Overt & covert channels
☞ Overt channels overview
☞ Covert channels overview
☞ Lick everybody's asses to get access...
☞ ...and hide to be stealthy

3

Plan (2/3)

Remote control & triggers
☞ Internet polling
☞ Short Messages (SMS)
☞ Class 0 Short Messages as a covert channel

Hacking Android's Java API
☞ Reflection is your best friend
☞ Go deeper and use what you need
☞ How to send Class 0 short messages with Android

SDK ver. > 6

4

Plan (3/3)

SpyYourWife
☞ Instant geolocation app.
☞ Class 0 SMS transport layer
☞ Geolocation tricks

Conclusion
☞ Android, the most awesome mobile phone of the

world ?

5

Plan (1/4)

Android System
☞ Features
☞ Permissions
☞ API & SDK
☞ Debugging mode

Overt & covert channels
☞ Overt channels overview
☞ Covert channels overview
☞ Lick everybody's asses to get access...
☞ ...and hide to be stealthy

6

Android

OS for mobile phone and tablets
☞ Owned by Google Inc.
☞ Open-source (well, almost)

Advantages
☞ SDK provided by Google

 Dedicated development tools

☞ Code available
☞ Android emulator based on qEmu
☞ Specific Eclipse plugin

http://android.google.com

7

Android

Generic features (smartphones)
☞ WiFi connectivity
☞ GSM/CDMA connectivity
☞ Global Positionning System
☞ SMS/MMS capability
☞ Internet connectivity
☞ Multiple sensors (proximity, orientation, ...)

8

Android

Security Model
☞ Based on « permissions »
☞ Permissions rule Android's world

 Internet access
 Sensor management
 Telephony management

Each application runs in its own world
☞ Separated files
☞ Cannot interact with another app.

9

Android

SDK
☞ Google provides us with a useful SDK
☞ Regularly updated
☞ Available on Windows & Linux
☞ Create APK files (Android app. package files)

Java API
☞ Android provides many useful components

 Sockets
 Multi-threading

☞ They are packed in android.jar
☞ Available from every application

10

Android

Debugging mode
☞ Allow application debugging through USB
☞ Allow application deployment through USB
☞ Anybody having a physical access to the phone can

enable this mode

Unknown sources
☞ Dangerous option of Android
☞ Enable any application to be install from anywhere

User is responsible of his/her own safety !

11

Plan (1/4)

Android System
☞ Features
☞ Permissions
☞ API & SDK
☞ Debugging mode

Overt & covert channels
☞ Overt channels overview
☞ Covert channels overview
☞ Lick everybody's asses to get access...
☞ ...and hide to be stealthy

12

Overt & covert channels

Everything is locked or almost locked

How to transfer confidential information to the
outside ?
☞ Use generic communication channels

 Internet through HTTP/S
 Intent
 SMS
 Application logs

☞ Use other communication channels
 Light state
 Active processes or threads
 Sound, etc.

13

Android Intents

Android is based on « Activities »
☞ Kind of process
☞ An application can have one or more activities

Activities can send and receive « Intents »
☞ An intent contains

 A name
 And extra params

It is a convenient way to transfer data between
two activities

14

Covert channels

Covert channel
☞ Can be use to transfer data between applications

with different permissions
☞ This is called « collusion »

Based on inoffensive channels
☞ Light state used to transmit data between two

applications
☞ Modifying the nomber of running threads in order to

transmit data

The stealthier the covert channel is, the less
data we can send

15

Overt channels

Communication channels
☞ They are used as usual

 HTTP requests
 SMS/MMS
 TCP connections

☞ They are easily detected

But user is very vulnerable
☞ Thanks to a bit of social-engineering, it is easy to

convince the user to install our application
☞ Permissions are not checked by the user (non-

technical)

16

Lick everybody's asses ...

Overt channel based malware
☞ Application is released on the Android Market

 Requires READ_PHONE_STATE permission
 Requires INTERNET permission

☞ In the Market, the application states that
 It does not send private information over Internet
 It uses the READ_PHONE_STATE permission to access

only the phone state

17

… and hide to be stealthy

Overt channels can be easily monitored
☞ TaintDroid
☞ Intent-based communication

 Easy: register an intent receiver for a specific intent

Let's make it harder :)
☞ Use encryption with cryptographic API
☞ Design a home-made encoding

In fact, once the application installed it's all
fucked up

18

Plan (2/3)

Remote control & triggers
☞ Internet polling
☞ Short Messages (SMS)
☞ Class 0 Short Messages as a covert channel

Hacking Android's Java API
☞ Reflection is your best friend
☞ Go deeper and use what you need
☞ How to send Class 0 short messages with Android

SDK ver. > 6

19

Remote control & triggers

Once a malware is installed, we want to
☞ Take complete control of the phone
☞ Remote control the phone

 Execute nasty actions
 Send pr0n SMS/Email
 …

This can be done with:
☞ Internet polling
☞ Specific triggers

20

Internet polling

Based on regular HTTP requests
☞ Requires Internet connectivity

 Not always available
 Bandwidth limited
 Quotas set by many Telcos

☞ Require a server-side script with a database
 Costs money and time

Needs a running background application !

Well, not a good way to RC a phone ...

21

Triggers

Instead of polling,
☞ Wait for an event to occur !

Many ways to trigger an action
☞ SMS
☞ phone call
☞ Geolocation

SMS & phone calls can be easily intercepted
by a dedicated application

No background application, the activity is
loaded by the OS !

22

Triggers

Advantages:
☞ Easier to implement
☞ Still work when Internet connectivity is down
☞ Still work when phone is asleep

 Polling requires the application to stay in background
 Background application might be closed if unused

Coolest triggers
☞ SMS
☞ Phone call

23

Triggers

SMS
☞ Can be intercepted on every Android device
☞ Contains only a hundred bytes of data (133 in 8bits

encoding)
☞ Different classes of SMS

 Class 0: SMS must be showed instantly and not saved
on SIM or in the phone

 Class 1: « normal » short message
 Class 2: SM contains SIM data
 Class 3: SM should be forwarded to an external device

Short message of class 0 is normally never
sent by a phone

24

How to intercept SMS ?

When the Android system receives an SMS, it
broadcasts a specific Intent
☞ android.provider.Telephony.SMS_RECEIVED

We can set in the AndroidManifest.xml file (in
the app.) an Intent receiver that reacts on this
Intent

<receiver android:name=".BusterReceiver">
<intent­filter android:priority="100">

<action

android:name="android.provider.Telephony.SMS_RECEIVED"
/>

</intent­filter>
</receiver>

25

How to intercept SMS ?

The priority is important: the higher, the better

Android will launch the Intent receiver when a
SMS is received
☞ Our BroadcastReceiver will be the first notified of

this SMS
☞ We are able to avoid the broadcast of the event to

the underlying broadcast receivers (lower priority)
private final String ACTION =
"android.provider.Telephony.SMS_RECEIVED";
public void onReceive(Context context, Intent intent) {

if (intent.getAction().equals(ACTION))
{
this.abortBroadcast();/* avoid further broadcast */
}

}

26

Plan (2/3)

Remote control & triggers
☞ Internet polling
☞ Short Messages (SMS)
☞ Class 0 Short Messages as a covert channel

Hacking Android's Java API
☞ Reflection is your best friend
☞ Go deeper and use what you need
☞ How to send Class 0 short messages with Android

SDK ver. > 6

27

Hacking Android's Java API

Android Java API
☞ Contains every component needed by every

android application
☞ Designed on an object model

 Private classes, methods and properties
 Public classes, methods and properties
 Internals are hidden by methods and classes visibility and

not directly available

Is there a way to access a private method from
outside its class ?
☞ YAY !

28

Java Reflection API

See ya in a mirror
☞ Reflection allows introspection and dynamic object

manipulation
☞ We can instantiate objects, invoke methods and

get/set properties

The Android Java API is full of private stuff not
intended to be used as-is
☞ Is there a way to bypass restrictions and/or do

some fun stuff ?

Yes, we can make a method public instead of
private and use it !

29

Go deeper and use what you need !

Android's Telephony layer
☞ Provides a SmsManager class
☞ This class contains the sendTextMessage() method

 Can only send Class 1 SMS

☞ BUT also contains a private method called
sendRawPdu()

 Can send SMS in raw mode, with PDU encoding
 PDU: Protocol Description Unit

Some bytes of the PDU-encoded SMS can be
altered in order to make it Class 0 SMS =)

30

Go deeper and use what you need !

SMS PDU format

Offset Size Role

0 1 SMSC address size

1 1 Message type

2 1 TP-Message Reference

3 1 Address length (X)

X+3 1 Protocol Identifier (TP-ID)

X+4 1 Data coding scheme (TP-DCS)

... ...

31

Go deeper and use what you need !

Data coding scheme
☞ Bit 0-1: message class
☞ Bit 2: Message coding

To force a PDU-encoded SMS to be Class 0:
☞ Set bits 7-4 to 1
☞ Set bit 1-0 to 0

TP-DCS byte to F0h is pretty easy
☞ 8-bit data (instead of 7-bit)

32

Go deeper and use what you need !

First, grab a reference on the sendRawPdu
method:

byte[] bb = new byte[1];
Method m2 =
SmsManager.class.getDeclaredMethod(

"sendRawPdu",
bb.getClass(),
bb.getClass(),
PendingIntent.class,
PendingIntent.class);

33

Go deeper and use what you need !

Then, make it accessible and use it:
m2.setAccessible(true);
SmsMessage.SubmitPdu pdus =
SmsMessage.getSubmitPdu(

null, PhoneNumber,message,false
);
/* change class to Class 0 */
size = (int)pdus.encodedMessage[2];
size = (size/2) + (size%2);
pdus.encodedMessage[size+5] = 0xF0;
m2.invoke(/* Invoke */

sm,
pdus.encodedScAddress,
pdus.encodedMessage,
Null,
null);

34

Plan (3/3)

SpyYourWife
☞ Instant geolocation app.
☞ Class 0 SMS transport layer
☞ Geolocation tricks

Conclusion
☞ Android, the most awesome mobile phone of the

world ?

35

SpyYourWife

SpyYourWife
☞ Proof-of-concept using Class 0 SMS to transfer

data between two mobile phones
☞ This app. (once installed on a target phone, through

USB for instance) react onClass 0 SMS
☞ Orders are sent in Class 0 SMSes and intercepted

by the app.

Using Class 0 SMS avoid SMS filtering by text
☞ False-positive reduction

36

SpyYourWife

Geolocation tricks
☞ Use only ACCESS_COARSE_LOCATION

 ACCESS_FINE_LOCATION requires the GPS location
provider

 ACCESS_COARSE_LOCATION will only use Wifi
networks and Tower cell ID to locate the phone (less
visible)

 READ_PHONE_STATE can help by providing the Cell ID

☞ Android keeps track of your location
 Calling the getLastKnownLocation() method of Android's

LocationManager allows you to get the last known
location for the device

 Useful when another application requires regular updates

37

Plan (3/3)

SpyYourWife
☞ Instant geolocation app.
☞ Class 0 SMS transport layer
☞ Geolocation tricks

Conclusion
☞ Android, the most awesome mobile phone of the

world ?

38

Conclusion

Android users can decrease dramatically the
security of their smartphones
☞ They have to evaluate the permissions requested

by each application
☞ They have to known exactly what each permission

implies

Android's Java API can be hacked through
reflection
☞ Dynamic code and access modification
☞ Dynamic instantiation, method invocation, property

tampering, etc.

39

Conclusion

Covert channels
☞ They are damned amazing, but are they really

useful ?
 Applications can easily be installed with user's consent
 Applications run in their own environment, so they cannot

be easily monitored

Overt channels
☞ Easy way to transfer data through a medium
☞ Easily detected, but data can be encrypted to avoid

detection
☞ A common and good way to leak information from

the phone

40

Conclusion

Actual threats
☞ Malwares

 Constantly growing
 DroidDream case
 Use covert channels to communicate between apps

Trojans
☞ Still easy to drop a trojan on a smartphone

 USB debugging feature
 Social-engineering

☞ Can use overt channels once the application is
installed

41

Questions

Questions ?

42

Special thanks to

Heurs
@emiliengirault

@adesnos

