

Exploitation in a
hostile world

Warren
Levin

Who's this dude talking?

● Warren Levin or more commonly known as
m_101 in the infosec community

● Student in a MSc in Forensic Computing

● Hobbyist in computer security

Agenda

● Exploitation timeline
● Exploitation in the past

● Format strings
● Buffer overflows

● Exploitation in the present
● Mitigations: GS, SafeSEH, DEP/NX, ASLR
● Bypass: GS, SafeSEH, DEP/NX, ASLR

● The future of exploitation?

Exploitation timeline

Format strings

● printf(), sprintf(), snprintf(), etc
● Thanks to bad usage:

● printf(str); != printf(“%s”, str);

● Arbitrary number of arbitrary writes
● Formats:

● %n : write number of bytes written to a variable
● %x : read hex digit in stack

● Length specifiers:
● h : short

Format strings : long writes

● “0x08046889%x%n0x08046890%x
%n0x08046891%x%n0x08046892%x%n”

Buffer Overflows

● Buffer overflows first publicly released by
AlephOne

● They allows arbitrary code execution

The “faulty instructions”

● Here they are:

mov esp, ebp

pop ebp

ret

● Same as:

leave

ret

SEH Exploitation

● Based on Windows Exception handling (<= XP)
● More reliable than direct ret overwrite

Windows memory protections

(Sotirov)

GS/StackGuard

● Place a cookie/canary on stack before ret
address
● Before overwriting ret, we also overwrite cookie

● Types: random, random xor, terminator, null

● Cookie is checked before function returns
● Unmatched cookies can lead to a killed process

GS/StackGuard

GS/StackGuard Bypass

● Overwrite EIP without writing GS (XOR it!)
● Format string
● Using a pointer: go for EIP, cookie (.idata), vfunc, ...

● Trigger SEH handler before cookie verification

● Vuln in old VisualStudio: overwrite default
handler

SafeSEH

● Verification if handler addr is included in
protected binary

● Forbid ret2code (p/p/r) in SafeSEH module
through SEH exploit

SafeSEH Bypass

● Use non SafeSEH module

● Direct RET overwrite (no SEH sploit ...)

ASLR

● ASLR = Address Space Layout Randomization
● Randomization of address space layouts

● Executable mapping: through PIC
● Stack, Heap, etc

● In Linux since kernel 2.6.12
● In Windows since Vista
● In Mac OS since … never?

ASLR bypass

● Information leaks
● Partial overwrite
● Layout of stack is the same (offsets are static)
● ret2code (no PIE)
● Pointers laying in the stack
● Heap spraying (mostly using JavaScript)
● Brute forcing (ugly!)

DEP/NX

● Set pages as non executable
● Through software implementation (PAX, grsecurity)
● Using hardware capabilities: NX, XD bits

● Multiple policies on Windows:
● OptIn
● OptOut
● AlwaysOn
● AlwaysOff

● Forbid direct execution of payload in stack

DEP/NX bypass

● Mostly based on ret2code techniques
● VirtualProtect()
● VirtualAlloc()
● SetProcessDEPPolicy()
● NtSetInformationProcess()
● WriteProcessMemory()
● etc

Partial ROP Payload

● Trigger vulnerability
● Access to executable/writable memory

● Memory protection off (SetProcessDEPPolicy(), etc)
● Allocate memory (VirtualAlloc(), HeapAlloc(), etc)
● Use of existing memory

● Copy payload
● Execute payload

NovaCTF: Partial ROP

● HeapCreate()
● HeapAlloc()
● Sleep(2)
● Send payload
● Execute payload

Full ROP

● Addresses and data only in payload! No code!
● ROP is turing complete
● Stack construction using gadgets such as:

● mov [eax], ecx
● add [eax], ecx
● sub [eax], ecx
● ...

● EIP “slide” through the addresses

Virtuosa: Full ROP multistage

● Badchars: all caps
● Forbids a lot of payloads, even alpha2
● Bypass with encoder or ROP

● imports resolution (in ws2_32.dll)
● Fixing: string table, arguments, addresses, etc
● socket programming using ROP
● Send payload
● Execute payload

The future of exploitation?

● Hardened sandboxes
● Use of VT-X or Pacifica HVM technologies

● Similar ACLs as Android for example
● Increased use of BOF free languages
● Kernel exploitation
● Race conditions / Timing attacks
● Web/Cloud based attacks (SQLi, etc)
● GPUs for heavy computation
● Social Engineering

The end ...

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

