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Who's this dude talking?

● Warren Levin or more commonly known as 
m_101 in the infosec community

● Student in a MSc in Forensic Computing

● Hobbyist in computer security 



  

Agenda

● Exploitation timeline
● Exploitation in the past

● Format strings
● Buffer overflows

● Exploitation in the present
● Mitigations: GS, SafeSEH, DEP/NX, ASLR
● Bypass: GS, SafeSEH, DEP/NX, ASLR

● The future of exploitation?



  

Exploitation timeline



  

Format strings

● printf(), sprintf(), snprintf(), etc
● Thanks to bad usage:

● printf(str);  !=  printf(“%s”, str);

● Arbitrary number of arbitrary writes
● Formats:

● %n : write number of bytes written to a variable
● %x : read hex digit in stack

● Length specifiers:
● h : short



  

Format strings : long writes

● “0x08046889%x%n0x08046890%x
%n0x08046891%x%n0x08046892%x%n”



  

Buffer Overflows

● Buffer overflows first publicly released by 
AlephOne

● They allows arbitrary code execution



  

The “faulty instructions”

● Here they are:

mov esp, ebp

pop ebp

ret

● Same as:

leave

ret



  

SEH Exploitation

● Based on Windows Exception handling (<= XP)
● More reliable than direct ret overwrite



  

Windows memory protections

(Sotirov)



  

GS/StackGuard

● Place a cookie/canary on stack before ret 
address
● Before overwriting ret, we also overwrite cookie

● Types: random, random xor, terminator, null

● Cookie is checked before function returns
● Unmatched cookies can lead to a killed process



  

GS/StackGuard



  

GS/StackGuard Bypass

● Overwrite EIP without writing GS (XOR it!)
● Format string
● Using a pointer: go for EIP, cookie (.idata), vfunc, ...

● Trigger SEH handler before cookie verification

● Vuln in old VisualStudio: overwrite default 
handler



  

SafeSEH

● Verification if handler addr is included in 
protected binary

● Forbid ret2code (p/p/r) in SafeSEH module 
through SEH exploit



  

SafeSEH Bypass

● Use non SafeSEH module

● Direct RET overwrite (no SEH sploit ...)



  

ASLR

● ASLR = Address Space Layout Randomization
● Randomization of address space layouts

● Executable mapping: through PIC
● Stack, Heap, etc

● In Linux since kernel 2.6.12
● In Windows since Vista
● In Mac OS since … never?



  

ASLR bypass

● Information leaks
● Partial overwrite
● Layout of stack is the same (offsets are static)
● ret2code (no PIE)
● Pointers laying in the stack
● Heap spraying (mostly using JavaScript)
● Brute forcing (ugly!)



  

DEP/NX

● Set pages as non executable
● Through software implementation (PAX, grsecurity)
● Using hardware capabilities: NX, XD bits

● Multiple policies on Windows:
● OptIn
● OptOut
● AlwaysOn
● AlwaysOff

● Forbid direct execution of payload in stack



  

DEP/NX bypass

● Mostly based on ret2code techniques
● VirtualProtect()
● VirtualAlloc()
● SetProcessDEPPolicy()
● NtSetInformationProcess()
● WriteProcessMemory()
● etc



  

Partial ROP Payload

● Trigger vulnerability
● Access to executable/writable memory

● Memory protection off (SetProcessDEPPolicy(), etc)
● Allocate memory (VirtualAlloc(), HeapAlloc(), etc)
● Use of existing memory

● Copy payload
● Execute payload



  

NovaCTF: Partial ROP

● HeapCreate()
● HeapAlloc()
● Sleep(2)
● Send payload
● Execute payload



  

Full ROP

● Addresses and data only in payload! No code!
● ROP is turing complete
● Stack construction using gadgets such as:

● mov [eax], ecx
● add [eax], ecx
● sub [eax], ecx
● ...

● EIP “slide” through the addresses



  

Virtuosa: Full ROP multistage

● Badchars: all caps
● Forbids a lot of payloads, even alpha2
● Bypass with encoder or ROP

● imports resolution (in ws2_32.dll)
● Fixing: string table, arguments, addresses, etc
● socket programming using ROP
● Send payload
● Execute payload



  

The future of exploitation?

● Hardened sandboxes
● Use of VT-X or Pacifica HVM technologies

● Similar ACLs as Android for example
● Increased use of BOF free languages
● Kernel exploitation
● Race conditions / Timing attacks
● Web/Cloud based attacks (SQLi, etc)
● GPUs for heavy computation
● Social Engineering



  

The end ...

Questions?
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