
Automated Detection of HPP
Vulnerabilities in Web Applications

Marco `embyte` Balduzzi

Roadmap
  Introduction
  HTTP Parameter Pollution

  Client-Side
  Server-Side
  Other Uses

  Detection
  Approach
  Tool
  Demo

  Experiments
  Results
  Prevention

Who am I?
  From Bergamo (IT) to the French

Riviera
  MSc in Computer Engineering
  PhD at EURECOM
  8+ years experience in IT Security
  Engineer and consultant for

different international firms
  Co-founder of BGLug, Applied Uni

Lab, (ex) SPINE Group, Nast, etc…

  http://www.iseclab.org/people/
embyte

The Web as We Know It
  Has evolved from being a collection of simple and static

pages to fully dynamic applications
  Applications are more complex than they used to be
  Multi-tier architecture is the normal
  Many complex systems have web interfaces

The Web before

Now

Increased Importance of Web Security
  As a consequence:

  Web security has increased in importance
  OWASP, the Top Ten Project
  Attack against web apps constitute 60% of attacks on the

Internet (SANS’s The Top Cyber Security Risks)
  Application being targeted for hosting drive-by-download

content or C&C servers
  Malware targeting browsers (e.g. key and network loggers)

Increased Importance of Web Security
  A lot of work done to detect injection type flaws:

  SQL Injection
  Cross Site Scripting
  Command Injection

  Injection vulnerabilities have been well-studied, and tools
exist
  Sanitization routines in languages (e.g., PHP)
  Static code analysis (e.g., Pixy, OWASP Orizon)
  Dynamic techniques (e.g., Huang et al.)
  Web Application Firewalls (WAF)

HTTP Parameter Pollution
  A new class of Injection Vulnerability called HTTP

Parameter Pollution (HPP) is less known
  Has not received much attention
  First presented by S. di Paola and L. Carettoni at OWASP 2009

  Attack consists of injecting encoded query string
delimiters into existing HTTP parameters (e.g. GET/
POST/Cookie)
  If application does not sanitize its inputs, HPP can be used to

launch client-side or server-side attacks
  Attacker may be able to override existing parameter values,

inject a new parameter or exploit variables out of a direct
reach

Research Objectives
  To create the first automated system for detecting HPP

flaws
  Blackbox approach, consists of a set of tests and heuristics

  To find out how prevalent HPP problems are on the web
  Is the problem being exaggerated?
  Is this problem known by developers?
  Does this problem occur more in smaller sites than larger

sites?
  What is the significance of the problem?

Roadmap
  Introduction
  HTTP Parameter Pollution

  Client-Side
  Server-Side
  Other Uses

  Detection
  Approach
  Tool
  Demo

  Experiments
  Results
  Prevention

HTTP Parameter Handling
  During interaction with web application, client provides

parameters via GET/POST/Cookie
  HTTP allows the same parameter to be provided twice

  E.g., in a form checkbox
http://www.w3schools.com/html/tryit.asp?
filename=tryhtml_form_checkbox

  What happens when the same parameter is provided
twice?
  http://www.google.com/search?q=italy&q=china
  http://www.site.com/login?user=alice&user=bob

Google example

Yahoo example

HTTP Parameter Handling
  We manually tested common methods of 5 different

languages

  There is nothing bad with it, if the developer is aware of
this behavior
  Languages provide secure functions (python’s getfirst())

Technology/Server Tested Method Parameter Precedence

ASP/IIS Request.QueryString(“par”) All (comma-delimited string)

PHP/Apache $_GET(“par”) Last

JSP/Tomcat Request.getParameter(“par”) First

Perl(CGI)/Apache Param(“par”) First

Python/Apache getvalue(“par”) All (List)

HTTP Parameter Pollution (Client-Side)

Site vulnerable to
HTTP Parameter Pollution

Trigger URL are
sent to the victims

Malformed Page

Malicious Action

User Attack

Attacker generates
The Trigger URL Examples:

-  Deletion of personal emails
-  Generation of custom friend-requests
-  Posting malicious wall posts
-  Purchasing unintended products
-  Unintended voting

Client-Side #1: Unintended voting
  An application for voting between two candidates
  The two links are built from the URL

  No sanitization

Url : http://host/election.jsp?poll_id=4568

Link1:
 Vote for Mr.White
Link2:
 Vote for Mrs.Green

ID = Request.getParameter(“pool_id”)
href_link = “vote.jsp?poll_id=” + ID + ”&candidate=xyz”

Client-Side #1: Unintended voting
  poll_id is vulnerable
  Attacker generate a Trigger URL to be sent to his victims:

  http://host/election.jsp?poll_id=4568%26candidate%3Dgreen

  The resulting page now contains injected links:

  Candidate Mrs. Green is always voted!

 Vote for Mr. White

 Vote for Mrs. Green

Client-Side #2: Misleading shopping users

Client-Side #3: Sharing components
  Sharing functionalities can be attacked
  No validation in the sharer API (Facebook, Twitter, …)
  Injection on the customer side (e.g. blog post)
  Client-side attack

  Posting of unintended data

HTTP Parameter Pollution (Server-Side)

Attacker generates
The Trigger URL

Frontend

  Used to exploit the server-side logic of the web-
application

  The attacker sends the Trigger URL to the vulnerable
application

Backend

Server-Side #1: Payment System
  E.g., Payment system (di Paola / Carettoni)

void private executeBackendRequest(HTTPRequest request){
 String amount=request.getParameter("amount");
 String beneficiary=request.getParameter("recipient");
 HttpRequest("http://backendServer.com/servlet/actions","POST”,
 action=transfer&amount="+amount+"&recipient="+beneficiary);
}

Trigger URL: http://frontendHost.com/page?amount=1000&
 recipient=Mat%26action%3dwithdraw

Injected query on the backend:
HttpRequest("http://backendServer.com/servlet/actions","POST”,
 action=transfer&amount=1000&recipient=Mat&action=withdraw);

Server-Side #2: Database hijacking
  E.g., Access the user passwords
  ASP concatenates the values of two parameters with the

same name with a comma
  This permits to inject and modify the query on the

database
Normal requests:
URL: printEmploys?department=engineering
Back-end: dbconnect.asp?what=users&department=engineering
Database: select users from table where department=engineering

HPP injected requests:
URL: printEmploys?department=engineering%26what%3Dpasswd
Back-end: dbconnect.asp?what=users&department=engineering&what=passwd
Database: select users,passwd from table where department=engineering

Server-Side #3: Authorization Bypass
  Google Blogger exploited by Nir Goldshlager
  Get administrator privilege over any blogger account
  Attacker uses the add authors functionality

  The server checks the 1st blogid value but executes the 2nd
blogid value of the attacker

  When the attacker is added as user to the victim’s
blogger, he raises his privileges to administrator

POST /add-authors.do HTTP/1.1

security_token=attacker_token&blogID=attacker_blogidvalue&
blogID=victim_blogidvalue&authorsList=attacker_email&ok=Invite

Parameter Pollution – More uses
  1) Cross-channel pollution

  Override parameters between different input channels (GET/
POST/Cookie)

  Good security practice: accept parameters only from where
they are supposed to be supplied

  2) Bypass CSRF tokens
  E.g. Yahoo Mail client-side attack (di Paola & Carettoni)
  The user’s mails get automatically deleted!

Parameter Pollution – More uses
  3) Bypass WAFs input validation checks

  Split & Join the attack payload
  E.g., SQL injection via parameter replication
  Exploit ASP concatenation behavior and inline comments

Standard: show_user.aspx?id=5;select+1,2,3+from+users+where+id=1–
Over HPP: show_user.aspx?id=5;select+1&id=2&id=3+from+users+where+id=1—

Standard: show_user.aspx?id=5+union+select+*+from+users—
Over HPP: show_user.aspx?id=5/*&id=*/union/*&id=*/select+*/*&id=*/from+users--

Roadmap
  Introduction
  HTTP Parameter Pollution

  Client-Side
  Server-Side
  Other Uses

  Detection
  Approach
  Tool
  Demo

  Experiments
  Results
  Prevention

System for HPP Detection
  Four main components: browser, crawler, two scanners

P-Scan: Analysis of the Parameter
Precedence

  Analyzes a page to determine the precedence of
parameters, when multiple occurrences of the same
parameter are submitted

  Take parameter par1=val1, generate a similar value
par1=new_val
  Page0 (original): app.php?par1=val1
  Page1 (test 1) : app.php?par1=new_val
  Page2 (test 2) : app.php?par1=val1&par1=new_val

  How do we determine precedence? Naïve approach:
  Page0==Page2 -> precedence on first parameter
  Page1==Page2 -> precedence on second parameter

P-Scan: Problem with the naïve approach

  In practice, naïve technique does not work well
  Applications are complex, much dynamic content (publicity

banners, RSS feeds, ads, etc.)

  Hence, we perform pre-filtering to eliminate dynamic
components (embedded content, applets, IFRAMES, style
sheets, etc.)
  Remove all self-referencing URLs (as these change when

parameters are inserted)
  We then perform different tests to determine similarity

V-Scan in a nutshell
  For every page, an innocuous URL-encoded parameter

(nonce) is injected in the page’s parameters
  E.g., ?q=italy%26foo%3Dbar

  The page is submitted (GET/POST)

  Then, the answered page is checked for containing the
decoded version of the nonce (&foo=bar):
  In links or forms (action)

  V-Scan is much more complex. Check my BlackHat paper.

Where to inject the nonce
  PA = PURL ∩ PBody : set of parameters that appear

unmodified in the URL and in the page content (links,
forms)

  PB = p | p ∈ PURL ∧ p /∈ PBody : URL
parameters that do not appear in the page. Some of these
parameters may appear in the page under a different
name

  PC = p | p /∈ PURL ∧ p ∈ PBody : set of
parameters that appear somewhere in the page, but that
are not present in the URL

Reducing the False Positives
  E.g., one of the URL parameters (or part of it) is used as

the entire target of a link

  Self-referencing links

  Similar issues with printing, sharing functionalities
  To reduce false positives, we use heuristics

  E.g., the injected parameter does not start with http://
  Injection without URL-encoding

Implementation – The PAPAS tool
  PAPAS: Parameter Pollution Analysis System
  The components communicate via TCP/IP sockets

  Crawler and Scanner are in Python
  The browser component has been implemented as a Firefox

extension
  Advantage: We can see exactly how pages are rendered (cope

with client-side scripts, e.g. Javascript)
  Support for multiple sessions (parallelization)

  Now, as a free-to-use-service:
  http://papas.iseclab.org

Roadmap
  Introduction
  HTTP Parameter Pollution

  Client-Side
  Server-Side
  Other Uses

  Detection
  Approach
  Tool
  Demo

  Experiments
  Results
  Prevention

Two set of experiments
  1) We used PAPAS to scan a set of popular websites

  About 5,000 sites collected by the first 500 of Alexa’s main
categories

  The aim: To quickly scan as many websites as possible and to
see how common HPP flaws are

  In 13 days, we tested 5,016 sites and more than 149,000 unique
pages

  2) We then analyzed some of the sites we identified to be
HPP-vulnerable in more detail

The 5,016 tested sites

Categories # of Tested
Applications

Categories # of Tested
Applications

Financial 110 Shopping 460

Games 300 Social Networking 117

Government 132 Sports 256

Health 235 Travel 175

Internet 698 University 91

News 599 Video 114

Organization 106 Others 1,401

Science 222

Evaluation – Parameter Precedence
  Database Errors

  Web developers does not seem conscious of the possibility to
duplicate GET/POST parameter

  No sanitization is in place

Nasa.gov: coldfusion SQL Error

Evaluation – Parameter Precedence
  Parameter Inconsistency

  Sites developed using a combination of heterogeneous
technologies (e.g. PHP and Perl)

  This is perfectly safe if the developer is aware of the HPP
threat… this is not always the case

Evaluation – HPP Vulnerabilities
  PAPAS discovered that about 1,500 (30%) websites

contained at least one page vulnerable to HTTP
Parameter Injection
  The tool was able to inject (and verify) an encoded parameter

  Vulnerable != Exploitable
  Is the parameter precedence consistent?
  Can a possible attacker override existing parameter values?

Vulnerable or Exploitable?
  Injection on link
  Read a mail: http://site.com/script?mail_id=10&action=read

  Parameter in the middle -> always overriding
  ?mail_id=10&action=delete&action=read

  Parameter at the begin/end -> automated check via P-Scan
  ?action=read&mail_id=10&action=delete

  Injection on form:
  The injected value is automatically encoded by the browser
  Still, someone may be able to run a two-step attack (client-side) or a

server-side attack

  702 applications are exploitable (14%)

Evaluation

  More sensitive sites are equally (or even more) affected
by the problem

Some Case Studies
  We investigated some of the websites in more detail

  Among our “victims”: Facebook, Google, Symantec, Microsoft,
PayPal, Flickr, FOX Video, VMWare, …

  We notified security officers and some of the problems were
fixed

  Facebook: share component
  Several shopping cart applications could be manipulated to

change the price of an item
  Some banks were vulnerable and we could play around with

parameters
  Google: search engine results could be manipulated

World Health Organization

Your (secured) home banking

And Google

Possible improvements
  PAPAS does not support the crawling of links embedded

in active content
  E.g., flash

  Support additional encoding schemas (UTF-8, Double
URL)

  PAPAS currently only focuses on client-side exploits
where user needs to click on a link
  HPP is also possible on the server side – but this is more

difficult to detect
  Analogous to detecting stored XSS

What’s next?
  Complementary approach: white-box (SCA)
  Server-Side flaws

  Technology: Pixy, RIPS

  Problems: Parsing, OOP support, Custom Sanitizations
  PHP-Parser: https://github.com/nikic/PHP-Parser#readme
  Saner

  Get in touch!

HPP Prevention
  Input validation

  Encoded query string delimiters

  Use safe methods
  Handle the parameter precedence
  Channel (GET/POST/Cookie) validation

  Raise awareness
  The client can provide the same parameter twice (or more)

Conclusion
  Presented the first technique and system to detect HPP

vulnerabilities in web applications.
  We call it PAPAS, http://papas.iseclab.org

  Conducted a large-scale study of the Internet
  About 5,000 web sites

  Our results suggest that Parameter Pollution is a largely
unknown, and wide-spread problem

  We hope that this work will help raise awareness about
HPP!

Thanks for your attention.

Marco Balduzzi	

<embyte@iseclab.org>	

Acknowledgments & References
  Co-joint work:

  M. Balduzzi, C. Torrano Gimenez, D. Balzarotti, and E. Kirda.
  NDSS 2011, San Diego, CA.
  Automated discovery of parameter pollution vulnerabilities in web

applications

  Minded Security Blog, S. di Paola & L. Carettoni
  http://blog.mindedsecurity.com/2009/05/client-side-http-

parameter-pollution.html

  I collected a bunch of resources here:
  http://papas.iseclab.org/cgi-bin/resources.py

