

Attacking and Defending the Smart Grid

Pulling back the curtains to reveal the front battle lines of Smart Grid security.

Justin Searle – InGuardians

Purpose of this Talk

- Many talks have been given on the "Smart Grid"
 - Some accurately and articulately represent the security issues we are dealing with
 - Others over-hype vulnerabilities using outdated, first generation hardware, use fringe vendor products, or simply disable security modes all together
 - Most mistakenly imply that Smart Meters and SCADA are the whole picture
- The media "coverage" always runs with the worst case scenarios, regardless of the messages their interviewees are trying to present
- Lack of clarity in "Smart Grid" security benefits no one

Who are we to give this Talk?

- InGuardians have been working with electric utilities, vendors, and that community for years
- InGuardians have lead and participated in numerous "Smart Grid" security efforts:
 - Served in leadership positions some of the electric utilities largest community groups, including UCAIUG's AMI Sec, Smart Grid Security Working Group, Advancing Security for the Smart Grid (ASAP-SG)
 - Produced the industry's first AMI Penetration Testing Methodology (free download at www.inguardians.com, no registration needed)
 - Actively contributed to and lead several teams in the creation of NIST Inter-Agency Report 7628: "Guidelines for Smart Grid Cyber Security" (available at: http://csrc.nist.gov/publications/nistir/ir7628/nistir-7628_vol1.pdf, also see vol2 and vol3)
 - Continued participation in DOE's Smart Grid Interoperability Project (SGIP) and new National Electric Sector Cybersecurity Organization (NESCO).

What is the "Smart Grid"?

Source: http://www.sgiclearinghouse.org/ConceptualModel

Smart Grid Reference Model - Domains

Source: NIST IR 7628 Vol.

5

AMI Network Diagram

Customer Premises Networks

Residential / Commercial / Substations)

AMI Dataflow Diagram

Residential / Commercial / Industrial / Pole-Top Devices / Substations)

Overly Simplified Utility Attack Surface

Client Side Attacks

- For years, attackers have been leveraging company workstations as a primary attack avenue
 - Perimeters are getting harder to attack directly
 - Employees are more dependent on the Internet
 - Web browsers have excessive functionality that can be used for both good and evil
 - Employees have access to company's internal systems
- Types of client side attacks:
 - Malware, Viruses, and Botnets
 - Software vulnerabilities via buffer overflows, security boundaries, and software update mechanisms
 - Web browser attacks such as XSS (Cross Side Scripting) to execute malicious code on a user's browser

Client Side Defenses

- Traditional defenses are of limited use against targeted attacks
 - Antivirus can be bypassed within minutes through binary repacking and modification
 - Bypass web proxy filters by using non-blacklisted sites
- Proper network segregation, restricted functionality, and access control provide the strongest and most economical defense
 - Limit access to sensitive data and control system functionality
 - Segregate sensitive workstations and servers from other systems
- What does this mean for Utilities?
 - Prevent customer service reps from issuing disconnect/reconnect and demand response signals. Have it go through a ticketing system to a smaller control systems team
 - Deny Internet access to all workstations that issue control signals or interface with control systems, such as control center workstations, AMI administrators, and employees approving disconnect/reconnect and demand response signals
 - Stuxnet collateral damage proved this isn't being done!

Server Side Attacks

Server Side Attacks

- Customer and Employee portals are obvious targets
- Attacks on internal servers from compromised workstations should also be expected
- Pivoting through internal user web browsers to attack internal web applications is far less obvious
 - Most web applications are vulnerable to CSRF (Cross-Site Request Forgery) attacks
 - CSRF attacks are completely transparent to the user and can affect any system they are currently logged into
 - CSRF attacks don't require compromised workstations
- It is critical to understand web based attacks like CSRF because most of our Smart Grid systems use web based management interfaces

Cross-Site Request Forgery (CSRF)

Attacker Controlled Site

Employee opens a second tab and surfs to the Attacker website (or MySpace page...)

Hidden in the page, the Attacker's website tells the employee's web browser to disconnect a customer's power

Attack Prerequisites

- Attacker must have knowledge of the application he is attacking (can be obtained at conferences)
- Attacker must know the hostname or IP address of the CIS system (can be obtained by browser based attacks)

Utility Network

Employee using CIS system throughout the day

Web browser sends disconnect request to CIS

Customer Information System with Power Disconnect Capabilities

Server Side Defenses

- Keep systems patched and updated
- Perform periodic vulnerability assessments and penetration tests
- Use Intrusion detection and intrusion prevention systems in strategic positions around highly sensitive servers and control management systems
- Utilize centralized logging systems for alerting and forensic evidence

Network Attacks

Network Protocols and Security

- Its pointless to compare proprietary protocols to standards based protocols from a security perspective
 - standards based protocols benefit from greater transparency, but suffer from "interoperable" hacker tools
 - proprietary based protocols benefit from obscurity and sparse hacker tools, but suffer from limited security reviews
 - the same arguments can be made for open source vs.
 proprietary software
- Securely architected protocols is essential, but properly implemented and configured protocols are just as important

Attack: Weak Cryptography

- Wireless communications provide economical solutions but also present unique challenges
 - Frequency Hopping (FHSS) isn't a form of security!
- Many proprietary systems implement their own cryptography at one level or another
 - Some create their own crypto algorithms (thankfully this is very few)
 - Others create their own crypto stacks or libraries of know algorithms
 - Just because it's "AES" doesn't mean it's secure
- Exploits in insecure cipher modes, weak nonce construction, IV re-use, etc...
- Practical attacks include replaying data, decrypting packets, key recovery, data manipulation / injection
- Analysis tools to test implementations: Ent, visualization of RNG's, cryptographic accelerators, many custom tools/scripts

Histogram Analysis

Insecure Block Cipher Modes

- AES ciphers using CTR mode effectively become a stream cipher
- Without key derivation and rotation, IV collisions compromise integrity of cipher

```
C:\>type ivcoltest.py
#!/usr/bin/env python
knownplain = "\xaa\xaa\x03\x00\x00\x00\x08\x00\x45\x00\x01\x48\x00\x01\x00\x00"
knowncip = "\x31\xb9\x84\x81\xe1\x96\x6e\x71\xd8\xa3\x39\x0c\xfb\x48\xaa\x61"
unknowncip = "\x31\xb9\x84\x81\xe1\x96\x6e\x71\xd8\xa3\x3d\x0c\xfb\xb5\xaa\x61"
print "Decrypted packet: "
for i in range(0,len(knownplain)):
    print "%02x"%( (ord(knownplain[i]) ^ ord(knowncip[i])) ^ ord(unknowncip[i]) ),
print("\n")

C:\>python ivcoltest.py
Decrypted packet:
aa aa 03 00 00 00 08 00 45 00 05 48 00 fc 00 00
```

Defense: Weak Cryptography

- Design and implementation of cryptographic systems is extremely difficult
 - Avoid this if possible
 - Leverage vetted third-party encryption stack implementations
- If necessary, model system after proven protocols
 - IEEE 802.11i RSN key derivation
- Expert cryptographic review consulting

Vulnerabilities in crypto are especially hard to recover from (remember WEP?)

Hardware Attacks

Hardware Attacks

- All field deployed devices are susceptible to physical hardware attack
 - Meters on residential homes are obvious targets
 - Pole-top devices such as DA and feeder automation devices are not much harder to access (albeit riskier to your health)
 - Substation physical defenses are a deterrent, not an insurmountable obstacle
- If tamper mechanisms or perimeter alarms are triggered, modified hardware is not easily detected
- Basic Hardware Attacks:
 - Encryption key and flash extraction
 - Firmware / Software vulnerabilities
 - Flash image manipulation

Hardware Attacks

- Physical compromise of embedded hardware should assume the compromise of its stored data and the physical functions it controls
- Hardware attack's primarily objective is the escalation of physical access to remote access
- Retrieval of cryptography keys could facilitate:
 - decryption of captured network data
 - direct access to the network
 - impersonation of hardware device or in some cases their central control server
- Retrieval of firmware could facilitate:
 - identification of remotely exploitable vulnerabilities
 - FHSS algorithms or cryptography key derivation routines
 - ability to repurpose hardware as an attack tool

Attack: Key & Firmware Extraction

- Attacking data at rest
 - Power down the device, expose its circuit board, and interact directly with each component
 - Extract contents of accessible RAM, Flash, and EEPROM
 - Identify cryptography keys or firmware
- Attacking data in motion
 - Boot and normally operate the device in a lab, monitoring bus activity between major chips (MCU, Radio, Flash, RAM)
 - Crypto keys can often be found in key load operations between a microcontroller and crypto accelerator
 - Firmware can often be found in boot processes (between Flash and MCU) and firmware updates (between Radio, MCU, and Flash)

Interfacing with an IC

Lifting an IC's Chip Enable (CE) Pin

12C EEPROM Dumping

SPI Bus Snooping

Symmetric Key Search

- Perform basic string searches for obvious keys
- Develop custom tools to do more advanced searches:
 - GoodFET: Abuses vulnerability in TI, Ember radios to access RAM even when chip is locked
 - zbgoodfind: Search for ZigBee key using RAM dump as a list of potential keys
 - Combined they can recover the ZigBee network key

```
$ sudo goodfet.cc dumpdata chipcon-2430-mem.hex
Target identifies as CC2430/r04.
Dumping data from e000 to fffff as chipcon-2430-mem.hex.

...

$ objcopy -I ihex -O binary chipcon-2430-mem.hex chipcon-2430-mem.bin
$ zbgoodfind -R encdata.dcf -f chipcon-2430-mem.hex
zbgoodfind: searching the contents of chipcon-2430-mem.hex for encryption keys with the first encrypted packet in encdata.dcf.
Key found after 6397 guesses: c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf
```

Asymmetric Key Search

- Asymmetric keys have high entropy (very random)
- RAM and Flash is filled with non-random data
- Graphing entropy of flash reveals a spike in randomness
- This spike is the location of the asymmetric key in flash

Defense: Key & Firmware Extraction

- Utilize System-on-a-Chip (SoC) devices when possible
 - Also usually decreases BOM costs and increase performance
- Hardware tamper-proof mechanism and monitoring
 - Learn from Microsoft, epoxy layers are only a speed bump
- Limit encryption key distribution to small groups of devices, preferably with unique keys per meter
- Obscure encryption key storage
- TPM's can protect asymmetric keys
- Implement key rotation mechanisms

Be prepared to answer: What is my remediation strategy once the encryption keys protecting the NAN are compromised?

Conclusion

- The current state of "Smart Grid" security is far from perfect, but is further along than many give it credit
- "Smart Grid" is much larger than smart meters and SCADA.
 Research is needed in all major areas of security. Apply your talents and find your niche!
- Publically available AMI Attack Methodology
 - Download it at <u>www.inguardians.com</u>
 - Created for the UCA International Users Group's AMI Security Acceleration Project (ASAP) project
 - Provides a detailed methodology for performing penetration tests on smart meter networks
 - Methodology is directly applicable for any embedded hardware attacking
- NIST: http://csrc.nist.gov/publications/PubsNISTIRs.html#NIST-IR-7628
- ASAP-SG: http://www.smartgridipedia.org/index.php/ASAP-SG

Contact Information

www.inguardians.com

Justin Searle
justin@inguardians.com
justin@meeas.com
@meeas