Stopping Worms, Malicious Insiders, And Other Lower Life Forms in the Virtual Data Center

TAK3D0WNC0N: DS 4

Michael Berman, CISSP CTO Catbird

### Introduction

- Me: pen tester, kernel engineer, cybercrime investigator, virtual security SME
- You: understand virtualization, firewalls, intrusion detection, and incident response
- Keep it interactive



Is your current information security management system working?

### Poll:

- Are you constantly being attacked from both the inside and the outside?
- Or, are you not being attacked?



### Hypothesis: two kinds of attack

- Largely automated, targeting system resources, or PII
  - Botnets, phishing, pharming, ...
- 2. Mostly manual, targeting crown jewels
  - Old-school
  - Now called APT for some reason





- Each type of attack is on the rise
- Both can be very damaging
- Both can be described, detected, deterred



### Do some homework

What do I mean by "described?"What about unknown unknowns?



# We can learn from outside our industry

- North American Air Safety
  - No single point of failure
  - Requires 6 or more mistakes to cause a crash
- Accidents in North American Climbing
  - No single point of failure
  - Requires two or more mistakes to be in jeopardy



### Attack project plan

- **1**. Reconnaissance
- 2. Exploit weakness
- 3. Infiltrate or Blitzkrieg
- 4. Gather the goods
- 5. Exfiltrate
- 6. (some times) Repeat 4-5

How are the botnet folks different?



### Our track record: not so good

- Heartland Financial
  - SQL-injection
  - Single point of failure in external facing web application
- RSA, and Epsilon
  - Spear phishing
  - One unsafe click
- SIPRNet (wikileaks)
  - One bad user



### But we already know the answer

#### Don't we?



### **Describe attack**

- Understand attack methodologies
- Look for multiple points to disrupt attack
- Implement mitigation



Did anyone say...

# DEFENSE IN DEPTH



### But that's

- Hard
- Expensive
- Useless
- Cue the world's smallest violin playing the world's saddest song



### No. It's really easy.

- And worth it
- Virtualization security to the rescue
- Let me explain
- Then it's demo time



### **Virtualization security**

- Accurate inventory
  - Reduces unknowns
- Security orchestration
  - Reduces gaps and avoids manual failures
- Elastic deployment
  - Places security bastions everywhere
- Lowers costs
  - Easier to deploy, manage, and sustain



### Explanation

- Virtual security is integrated with hypervisor
  - Hypervisor protects bastion/bastion protects hypervisor
  - Integrity is reinforced
  - Controls are more accurate and harder to defeat
  - Hypervisor APIs allow for increased automation
  - Automation increases resilience







## Would you like to see my 1950?

I'm going to show the attack elementsThen demonstrate defense



### Conclusion





You're virtualizing anyway
Virtual security provides better protection and defense in depth



### **Reap the benefts**

- Reduce risk of successful attack
- Decrease cost of an incident
- Improve compliance
- Lower security TCO



### Questions

Thank youwww.catbird.com

