Faster Password Recovery with
modern GPUs

Andrey Belenko (a.belenko@elcomsoft.com)
ElcomSoft Co. Ltd.

mailto:a.belenko@elcomsoft.com

Password Cracking: Basics

e System stores hash of user’s password

* Authentication works by hashing user input
and comparing result with stored hash

PWD H Hash ol
Hash

* Password Cracking works exactly the same

— Try different passwords and eventually you’ll find
the correct one

Password Cracking: Trends

Changes in past five years:

* «Salting» used to avoid pre-computations
* (Much) Stronger cryptography is used

* Password cracking became much slower

What can be done?

* Continue research
* Increase password recovery speed

ErCEMSERTL

Password Recovery: How to do it Faster?

Softwa re e Free for End-Users
e Limited speedup (10-20%)

O ptl 101 F4z101e)a) | « Need to re-optimize for every new CPU

Special e Expensive devices

e \WWon’t work with software from other vendors

H d rd WIS e Not very cost-effective

e Hardware already installed in many computers

CO mmon e Cost-effective

Hardware e Compatible with software from different vendors
e Can be used for other applications

GPU: Two Worlds

NVIDIA ATI

Name CUDA CAL
First public beta Feb 2007 Mar 2008
Minimum hardware GeForce 8 HD 2X00
High-level language C/C++ (NVCC) C/C++

(Brook+)
Intermediate language PTX IL
Low-level language No For R600 only

CUDA Basics

* GPU is a highly multithreaded data-parallel
coprocessor

— Up to 128 processors (16 multiprocessors)

* Fast on-board RAM
— Up to 70 GiB/sec throughput

 Completely different programming model

— Write your program from scratch rather than
porting serial implementation

Task Partitioning

Function compiled for GPU is called kernel

Kernel runs as a grid of thread blocks
— Block may be 1D, 2D, or 3D
— Grid may be 1D or 2D

Threads can communicate within block

No grid-level communication or
synchronization

e Upto 512 threads
in one block

* Grid sizes up to
65535x65535

 Hardware allows
up to 2*! threads

Kernel 1 Block Block Block
(0, 0) (1,0) (2,0)
Block Block Block
(0, 1) (1, 1) (2, 1)
< Grid2 / L
Kernel 2 } VY
- Block (1, 1)

Memory Model

Multiprocessor-level
-m_m

Registers Thread Very Fast

Shared memory Block R/W Very Fast

Device-level

e | s | Awes | speed

Global memory Grid R/W Slow
Local memory Thread R/W Slow
Constant memory Grid RO Fast, cached

Texture memory Grid RO Fast, cached

8192 32-bit registers
per MP

16Kb shared memory
per MP

64Kb constant
memory per grid

8Kb constant cache
per MP

8Kb texture cache
per MP

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
Unit

ErCEMSERTL

Password Cracking on CPU

Very basic password cracker is simple:

while(1) {

password = get next password();
hash = calculate hash (password) ;
if (1s correct (hash))

{

print “Password found:” + password;
break;

/ PWD /
{

H

{
/ Hash /

/ Stored Hash /

Easy to parallelize!

ErCEMSERTL

Password Cracking on CPUs

Very basic parallel password cracking thread:

}

while(not found) {

mutex lock();

password = get next password();

mutex unlock() ;

hash = calculate hash (password) ;

if (1s_correct (hash))

{
print “Password found:” + password;
not found = true;
break;

}

Spawn as many threads as CPUs/cores you have

Password Cracking on GPU

* Fits well to CUDA programming model
* N threads check N password in parallel
* No inter-thread communications needed

Host Device
Password N

Password 2

Password 1

< Result 1 | |
< Result 2

< Result N

ErCEMSERTL

Tutorial: MD5 cracker on GPU

What i-th password cracking thread must do?
1. Generate (start+i)-th password

2. MD5(password)

3. If hash is correct, return i to the host

Notes:
1. Host doesn’t need to do MD5 at all!

2. Dictionary requires more host to GPU transfers
and thus less attractive. We'll do bruteforce.

ELCOMSOFT

PROACTIVE SOFTWARE

Tutorial: MD5 cracker on GPU

GPU kernel environment:

~_constant unsigned int nPassword[32];

___constant unsigned int nPasswordLen;

~_constant unsigned int cCharset[256];

~_constant unsigned int nCharsetlen;

~_constant unsigned long bHash([4];

~_device void MDS5Transform(unsigned long *s,
unsigned long *d);

~ _global wvoid MD5 Brute GPU(unsigned long *pdwResult);

ELCOMSOFT

PROACTIVE SOFTWARE

Tutorial: MD5 cracker on GPU

Getting password to process:

unsigned char Block[64] = { 0 };

unsigned 1int tid = blockIdx.x * 256 + threadIldx.x;
unsigned int t, r, 1, g = tid;

for(1 = 0; 1 < nPasswordLen; i1++) {

t = g + nPassword[i];
q = t/nCharsetlLen;
r = t - g*nCharsetLen;
Block[1] = cCharset[r];
}
// MD5 padding & length
Block[1] = 0x80;
Block[56] = nPasswordLen * 8;

ELCOMSOFT

PROACTIVE SOFTWARE

Tutorial: MD5 cracker on GPU
MD5 core (taken from RFC1321):

__device wvoid MD5Transform (unsigned long *state,
unsigned long *x) {
unsigned long a = statel[0], b = statel[l];
unsigned long ¢ = state[2], d = state[3];

/* Round 1 */
FF (a, b, ¢, d, x[0], S11, 0Oxd76aa478); /* 1 */

state[0] += a;
state[l] += Db;
state[2] += c;
state[3] += d;

ErCEMSERTL

Tutorial: MD5 cracker on GPU

MD?5 transform in kernel:

MD5STransform(State, (unsigned long*) Block);

Hash compare:

1f(State[0] == bHash[0])

1f(State[l] == bHash[1l])
1f(State[2] == bHash[2])
1f(State[3] == bHash[3])

*pdwResult = tid;

ELCOMSOFT

PROACTIVE SOFTWARE

Tutorial: MD5 cracker on GPU

Calling kernel from host:

extern "C" void RunKernel MD5 (int grid,
unsigned long *pdwResult)
MD5 Brute GPU<<< grid, 256 >>>(pdwResult); }

{

CUDA initialization:

int deviceCount = 0;
cudaError rc;
rc = cudaGetDeviceCount (&deviceCount) ;
1f(rc != cudaSuccess) {
printf(" ! cudaGetDeviceCount () failed: %s\n%,

cudaGetErrorString(rc));
return 0O;

ELCOMSOFT

PROACTIVE SOFTWARE

Tutorial: MD5 cracker on GPU

Allocate GPU memory:

rc = cudaMalloc(&pdResult, 4);

1f(rc !'= cudaSuccess) {
printf(" ! cudaMalloc () failed: %s\n",
cudaGetErrorString(rc));

return 0;

}

Copy data to GPU memory:

rc = cudaMemcpy (pdResult, &nResult, 4,
cudaMemcpyHostToDevice) ;

1f(rc != cudaSuccess) {
printf(" ! cudaMemcpy () failed: %s\n%V,
cudaGetErrorString(rc));

return 0;

ErCEMSERTL

Tutorial: MD5 cracker on GPU

Copy data to GPU constant memory:

return 0;

rc = cudaMemcpyToSymbol ("nPassword", nPassword, 32*4
1f(rc != cudaSuccess)
{

printf(" ! cudaMemcpyToSymbol () failed: %s\n",

cudaGetErrorString(rc));

) ;

ELCOMSOFT

PROACTIVE SOFTWARE

Tutorial: MD5 cracker on GPU

Main loop:

while (1)

{

RunKernel MD5(8192, (unsigned long*)pdResult);

rc = cudaThreadSynchronize();
1f(rc != cudaSuccess) {
printf(" ! cudaThreadSynchronize () failed: %$s\n",
cudaGetErrorString(rc));
break;

cudaMemcpy (&nResult, pdResult, 4,cudaMemcpyDeviceToHost);
// Increment password by 8192*256

Tutorial: MD5 cracker on GPU

This unoptimized version runs at
115M p/s
on 8800 GTX

10x faster than dual-core Core2 @ 1.86 GHz

Tutorial: MD5 cracker on GPU

Possible optimizations:

 Don’t use integer division

— Use multiplication instead

* Unroll loop

— This will move Block [] from local memory to
(much) faster registers

We've released optimized & free GPU MD5
cracker!

GPU: Performance

Password Recovery Speed
| | |

265

m 8800GTX
365 m 8600GTS

m Core2 Duo

0 50 100 150 200 250 300 350 400

Millions

Faster Password Recovery with
modern GPUs

Andrey Belenko (a.belenko@elcomsoft.com)
ElcomSoft Co. Ltd.

mailto:a.belenko@elcomsoft.com

