

KIDS – Kernel Intrusion
Detection System

Troopers 2008

Rodrigo Rubira Branco
(BSDaemon)

<rodrigo *noSPAM* kernelhacking . com>
<rodrigo *noSPAM* risesecurity . org>

Munich - Germany, 04/23/2008

Disclaimer

This presentation is just about issues I have worked on
in my own time, and is NOT related to the company
ideas, opinions or works.

I'm just a security guy who work for a big company
and in my spare time I do security research.

My main research efforts are in going inside the
System Internals and trying to create new problems to
be solved

Agenda

• Motivation – Kernel Protection Challenges

• Tools that try to act on this issues and their vulnerabilities

• Differences between protection levels (software / hardware)

• StMichael – what it actually does

• The Proposal – SMM Internals

• Comments on efforts of breaking the ideas

• Intel and PowerPC Protection Resources

• Questions and Astalavista baby :D

Motivation

• Linux is not secure by default (I know, many *secure*
linux distributions exist...)

• Most of efforts till now on OS protection don’t really
protect the kernel itself

• Many (a lot!) of public exploits were released for
direct kernel exploitation

• Beyond of the fact above, it is possible to bypass the
system’s protectors (such as SELinux)

• After a kernel compromise, life is not the same (never
ever!)

Motivation

• Intel platform (not talking about virtualization) supports 4
different privilege leves: from ring0 to ring3

• Most of current security systems try to protect ring3 (user-
land) jump to ring0 (kernel-land). Eg: PatchGuard, PaX

• Security systems running on ring0 and malicious code
running on ring0 are always fighting for “who arrives first” -
Inside ring0 everything is a mess

• Few efforts have been done to protect the kernel itself
against other malicious code that is running on the kernel

Userland protections

I loved this picture from Julie Tinnes presentation on
Windows HIPS evaluation with Slipfest

Breaking into security systems –
SELinux & LSM

Spender's public exploit (null pointer
dereference is a sample):

- get_current

- disable_selinux & lsm

- change gids/uids of the current

- chmod /bin/bash to be suid

Disabling SELinux & LSM

disable_selinux

- find_selinux_ctxid_to_string()

/* find string, then find the reference to it, then work
backwards to find a call to selinux_ctxid_to_string */

What string? "audit_rate_limit=%d old=%d by auid=%u
subj=%s"

- /* look for cmp [addr], 0x0 */
then set selinux_enable to zero

- find_unregister_security();

What string? "<6>%s: trying to unregister a"
Than set the security_ops to dummy_sec_ops ;)

PaX Details – Kernel Protections

- KERNEXEC
* Introduces non-exec data into the kernel level
* Read-only kernel internal structures

- RANDKSTACK
* Introduce randomness into the kernel stack address of a task
* Not really useful when many tasks are involved nor when a task is
ptraced (some tools use ptraced childs)

- UDEREF
* Protects agains usermode null pointer dereferences, mapping guard
pages and putting different user DS

The PaX KERNEXEC improves the kernel security because it turns
many parts of the kernel read-only. To get around of this an attacker need a bug that
gives arbitrary write ability (to modify page entries directly).

Changing page permissions (writing in a pax protected

kernel)

static int change_perm(unsigned int *addr)

{

 struct page *pg;

 pgprot_t prot;

 /* Change kernel Page Permissions */

 pg = virt_to_page(addr); /* We may experience some problems in RHEL 5 because it
uses sparse mem */

 prot.pgprot = VM_READ | VM_WRITE | VM_EXEC; /* 0x7 - R-W-X */

 change_page_attr(pg, 1, prot);

 global_flush_tlb(); /* We need to flush the tlb, it's done reloading the value in cr3 */

 return 0;

}// StMichael uses this code to change kernel pages to RO

Changing page permissions (writing in a pax

protected kernel)

void disable_write_protection(void);

asm(" .text ");

asm(" .type disable_write_protection, @function ");

asm(“cli”); // disable interrupts

asm(“mov %cr0, %eax”);

asm(“mov $0x10000, %ebx”);

asm(“notl %ebx”);

asm(“andl %ebx, %eax”); // disable WP bit in cr0

asm(“mov %eax, %cr0”);

)

Actual Problems

• Security normally runs on ring0, but usually on kernel
bugs attacker has ring0 privilleges

• Almost impossible to prevent (Joanna said we need a
new hardware-help, really?)

• Lots of kernel-based detection bypassing (forensic
challenge)

• Detection on kernel-based backdoors or attacks rely on
“mistakes” made by attackers

Introducing StMichael

• Generates and checks MD5 and, optionally, SHA1 checksum of several kernel data structures, such as the
system call table, and filesystem call out structures;

• Checksums (MD5 only) the base kernel, and detect modifications to the kernel text such as would occur
during a silvo-type attack;

• Backups a copy of the kernel, storing it in on an encrypted form, for resto- ring later if a catastrophic kernel
compromise is detected;

• Detects the presence of simplistic kernel rootkits upon loading;

• Modifies the Linux kernel to protect immutable files from having their immutable attribute removed;

• Disables write-access to kernel memory through the /dev/{k}mem device;

• Conceals StMichael module and its symbols;

• Monitors kernel modules being loaded and unloaded to detect attempts to conceal the module and its symbols
and attempt to "reveal" the hidden module.

• Uses encrypted messages to avoid signature detection of its code

• Random keys

• MBR Protection

Optimization

• Many efforts are needed to accomplish code
optimization

• I already do Lazy TLB:
– When my threads executes, I copy the old active mm

pointer to be my own pointer

– Doing so, the system does not need to flush the TLB
(one of the most expensive things)

– Because the system just touch kernel-level memory, I
don't need to care about wrong resolutions

– That's why I cannot just protect the user-mode
memory

Efforts on bypassing StMichael

• Julio Auto at H2HC III proposed an IDT hooking to
bypass StMichael

• Also, he has proposed a way to protect it hooking the
init_module and checking the opcodes of the new-
inserted module

• It has two main problems:
– Can be easily defeated using polymorphic shellcodes

– Just protect against module insertion not against arbitrary
write (main purpose of stmichael)

Hooking IDT

/* To load the new value */

void load_myidt(void *value)

{

asm(" lidtl %0 " : : "m" (*(unsigned short*)value));

}

/* To handle the interrupts */

asmlinkage void our_handler(unsigned long *interrupt_info)

{

struct task_struct *p = current;

int cpu = task_cpu(p)&1; /* identify the processor

int i = interrupt_info[10]; /* identify the interrupt */

interrupt_info[10] = old_table[i]; /* setup the original handler */

}

Hooking IDT

void our_entry(void);

asm(" .text ");

asm(" .type our_entry, @function ");

asm(" .align 16 ");

asm("our_entry: ");

asm(" i = 0; ");

asm(" .rept 256 ");

asm(" pushl $i ");

asm(" jmp ahead ");

asm(" i = i+1 ");

asm(" .align 16 ");

asm(" .endr ");

asm("ahead: ");

asm(" ret ");

asm(" pushal ");
asm(" pushl %ds ");
asm(" pushl %es ");
asm(" mov %ss, %eax");
asm(" mov %eax, %ds");
asm(" mov %eax, %es");
asm(" push %esp ");
asm(" call our_handler");
asm(" addl $4, %esp ");
asm(" popl %es ");
asm(" popl %ds ");
asm(" popal ");
asm(" ret ");

Proposed solutions against it

• Julio Auto proposed statical memory analysis as
solution – but, what about polymorphic code? :

asm("jmp label3 \n\

label1: \n\

popl %%eax \n\

movl %%eax, %0 \n\

jmp label2 \n\

label3: \n\

call label1 \n\

label2:" : "=m" (address));

Memory cloaking

• As exposed by Sherri Sparks and Jamie Butler in the
Shadow Walker talk at Blackhat and already used by
PaX project, the Intel architecture has splitted TLB's for
data and code execution

• Someone can force a TLB desynchronization to hide
kernel-text modifications from our reads (I explained
more about that in HITB Malaysia talk)

– This technique relies in the page fault handler patch, since I
protect the hardware debug registers and also I check the
default handler, it cannot be used to bypass StMichael.

Efforts on bypassing StMichael

• The best approach (and easy?) way to bypass
StMichael is:

– Read the list of VMA's in the system, detecting the ones
with execution property enabled in the dynamic memory
section

– Doing so you can spot where is the StMichael code in the
kernel memory, so, just need to attack it...

That's the motivation in the Joanna's comment about
we need new hardware helping us... but...

Where do I want to go? My
Proposal

• StMichael must be a SW independent of other set of
programs that try to defend the system

• I will put another layer of protection between the
system’s auditors/protectors/verifiers and the
hardware

• Are the researchers wrong about the impossibility of
protecting the O.S. without a hw-based solution?

How? SMM!

SMM – System Management Mode

The Intel System Management Mode (SMM) is typically
used to execute specific routines for power
management. After entering SMM, various parts of a
system can be shut down or disabled to minimize power
consumption. SMM operates independently of other
system software, and can be used for other purposes
too.

From the Intel386tm Product Overview – intel.com

How does it work?

• Chip is programmed to grab and recognize many type of events and timeouts

• When this type of event happens, the chipset gets the SMI (System Management
Interrupt)

• In the next instruction set, the processor saves it owns state and enters SMM

• When it receives the SMIACT, redirects all next memory cycles to a protected
area of memory (specially reserved for SMM)

• Received SMI and Asserted the SMIAct output? -> save internal state to
protected memory

• When contents of the processor state are fully in protected memory area, the SMI
handler begins to execute (processor is in real-mode with 4gb segments limit)

• SMM Code executed? Go back to the previous enviroment using the RSM
instruction

Context switches

From Cansecwest 2006 Duflot

PE – Protection Mode Enable Flag
VM – Virtual Mode Enable Flag
RSM – Return from SMM
SMI – SMM Interrupt

SMM Resources

• No paging – 16 bits addressing mode, but all memory
accessible using memory extension addressing

• To enter SMM, need an SMI

• To leave the SMM, need the RSM instruction

• When entering in SMM, the processor will save the
actual context – so, can leave it in any portion of the
address space wanted – see more ahead

• SMM runs in a protected memory, at SMBASE and
called SMRAM

SMM Details

• SMM registers can be locked setting the D_LCK flag (bit 4 in
the MCH SMM register)

• SMI_STS contains the device who generated the SMI (write-
reset register)

• In the NorthBridge, the memory controller hub contains the
SMM control register – the bit 6, D_OPEN, specifies that
access to the memory range SMRAM will go to SMM and not
for the I/O port

• The BIOS may set the D_LCK register, if so, we need to
patch the BIOS too (tks to the LinuxBIOS project, it's pretty
easy)

PCI Configuration

• Two I/O Port ranges:
– Data Port : 0xCFC-0xCFF

– Address Port: 0xCF8-0xCFB

• Write the device and register you want to acces in
the address port and read/write the data to/from
data port

• The addressing are:
– PCI bus

– Device

– Function

Setting the D_OPEN bit

int open_smram(void) {

struct pci_access *pacc; struct pci_dev *smram_dev; u8 current_value;

pacc = pci_alloc(); pci_init(pacc);

smram_dev = pci_get_dev(pacc, 0, 0, 0, 0);

current_value = pci_read_byte(smram_dev, SMRAM_OFFSET);

if(current_value & D_OPEN_BIT) { /* D_OPEN_BIT was set */

pci_cleanup(pacc); /* close everything */

return 0;

} else { /* D_OPEN_BIT is not set, we must set it */

pci_write_byte(smram_dev, SMRAM_OFFSET, (current_value | D_OPEN_BIT));

current_value = pci_read_byte(smram_dev, SMRAM_OFFSET);

if(current_value & D_OPEN_BIT) { /* D_OPEN_BIT was set */

 pci_cleanup(pacc); /* close everything */

 return 1;

} else { /* it was not able not set D_OPEN */

 pci_cleanup(pacc);

 return -1;

}

}

return -1;

}

The SMM Handler

asm (".data");

asm (".code16");

asm (".globl handler, endhandler");

asm ("\n" "handler:");

asm (" addr32 mov $stmichael, %eax"); /* Where to return */

asm (" mov %eax, %cs:0xfff0"); /* Writing it in the save EIP */

/* Check the integrity of the called code and save the current state */

asm (" rsm"); /* Switch back to protected mode */

asm ("endhandler:");

asm (".text");

asm (".code32");

Copying the handler to the SMRAM

int fd;

unsigned char *vidmem;

fd = open(MEMDEVICE, O_RDWR);

vidmem = mmap(NULL, MAPPEDAREASIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd,
SMIINSTADDRESS);

close(fd);

if(vidmem != memcpy(vidmem, handler, endhandler-handler)) {

printf("Could not copy asm to memory...\n");

exit(EXIT_FAILURE);

}

if(munmap(vidmem, MAPPEDAREASIZE) < 0) {

printf("Could not release mapped area, errno: %d\n", errno);

exit(EXIT_FAILURE);

}

if(close_smram() < 0) {

printf("Could not close SMRAM. Abort.\n");

exit(EXIT_FAILURE);

}

Enabling the #SMI globally

int enable_smi_gbl(u16 smi_en_iop)

{

u32 smi_en_value;

iopl(3);

smi_en_value = inl(smi_en_iop);

if(smi_en_value & GBL_SMI_EN_BIT) { /* gbl_smi_en was set */

return 0;

} else {

outl(smi_en_value | GBL_SMI_EN_BIT, smi_en_iop);

smi_en_value = inl(smi_en_iop);

if(smi_en_value & GBL_SMI_EN_BIT) { /* gbl_smi_en is set */

 return 1;

} else { /* gbl_smi_en cannot be set */

 return -1;

}

}

/* we should never reach this */

return -1;

}

Enabling #SMI when writing to APM_CNT

int enable_smi_on_apm(u16 smi_en_iop)

{

u32 smi_en_value;

iopl(3);

smi_en_value = inl(smi_en_iop);

if(smi_en_value & APMC_EN_BIT) { /* apmc_en was set */

return 0;

} else {

outl(smi_en_value | APMC_EN_BIT, smi_en_iop);

smi_en_value = inl(smi_en_iop);

if(smi_en_value & APMC_EN_BIT) { /* apmc_en is set */

 return 1;

} else { /* apmc_en cannot be set */

 return -1;

}

}

/* we should never reach this */

return -1;

}

Generating #SMI

 //0xb2 is the APM_CNT I/O

 asm(

 "inb $0xb2,%al\n"

 "movb $0xff, %al\n"

 "outb %al, $0xb2\n"

);

SMM locking

• As said SMM registers can be locked setting the
D_LCK flag (bit 4 in the MCH SMM register). After that,
control registers are locked and cannot be changed,
lacking of a reboot for that

• I need also to lock the SMI_EN (otherwise, someone
can just disable the #SMI)

SMM locking

int lock_smram(void) {

 struct pci_access *pacc; struct pci_dev *smram_dev; u8 current_value, orig_value;

 pacc = pci_alloc(); pci_init(pacc);

 smram_dev = pci_get_dev(pacc, 0, 0, 0, 0);

 current_value = pci_read_byte(smram_dev, SMRAM_OFFSET);

 orig_value = current_value;

 /* lock it if not locked */

 if(!(current_value & D_LCK_BIT)) pci_write_byte(smram_dev, SMRAM_OFFSET, (current_value | D_LCK_BIT));

 /* then try to unlock it */

 pci_write_byte(smram_dev, SMRAM_OFFSET, (current_value & ~D_LCK_BIT));

 current_value = pci_read_byte(smram_dev, SMRAM_OFFSET);

 /* is locked and cannot be unlocked */

 if(current_value & D_LCK_BIT) return 0;

 /* D_LCK_BIT is not set and could be not set */

 return -1;

}

Studying the SMM

u8 show_smram(struct pci_dev* smram_dev, u8 bits_to_show)

{

 struct pci_access *pacc;

 struct pci_dev *smram_dev_default;

 u8 current_value;

 if (! smram_dev) {

 pacc = pci_alloc();

 pci_init(pacc);

 smram_dev_default = pci_get_dev(pacc, 0, 0, 0, 0);

 } else smram_dev_default=smram_dev;

 current_value = pci_read_byte(smram_dev_default, SMRAM_OFFSET);

 printf("Current value in SMRAM: 0x%04x\n", current_value);

 if(RESERVED0_BIT & bits_to_show)

 printf("RESERVED0_BIT: %d\n", (current_value & RESERVED0_BIT) ? 1 : 0);

 if(D_OPEN_BIT & bits_to_show)

 printf("D_OPEN_BIT: %d\n", (current_value & D_OPEN_BIT) ? 1 : 0);

 if(D_CLS_BIT & bits_to_show)

 printf("D_CLS_BIT: %d\n", (current_value & D_CLS_BIT) ? 1 : 0);

 if(D_LCK_BIT & bits_to_show)

 printf("D_LCK_BIT: %d\n", (current_value & D_LCK_BIT) ? 1 : 0);

 if(G_SMRAME_BIT & bits_to_show)

 printf("G_SMRAME_BIT: %d\n", (current_value & G_SMRAME_BIT) ? 1 : 0);

 if(C_BASE_SEG2_BIT & bits_to_show)

 printf("C_BASE_SEG2_BIT: %d\n", (current_value & C_BASE_SEG2_BIT) ? 1 : 0);

 if(C_BASE_SEG1_BIT & bits_to_show)

 printf("C_BASE_SEG1_BIT: %d\n", (current_value & C_BASE_SEG1_BIT) ? 1 : 0);

 if(C_BASE_SEG0_BIT & bits_to_show)

 printf("C_BASE_SEG0_BIT: %d\n", (current_value & C_BASE_SEG0_BIT) ? 1 : 0);

 return current_value;

}

Compability Problems

• Yeah, there is SMM just in the Intel platform... but:
– Many platforms already supports something like

firmware interrupts

– Although any platform have some way to instrument it to
debug against hardware problems -> I covered some
difficulties for Power platforms in the Xcon/China (next
slides)

How interrupts are handled

• Here I will try to cover two different platforms: Intel and
PowerPC

• The general idea is to begin showing how my model
can be expanded to other architectures (Like Power,
which does not have System Management Mode in the
same way as the Intel arch)

• Interruptions are handled in different ways by different
platforms

Intel Platform – system calls

• Two different ways:
– Software interrupt 0x80

– Vsyscalls (newer PIV+ processors – calls to user space
memory (vsyscall page) and using sysenter and sysexit
functions

• To create the system call handler, the system does:
set_system_gate(SYSCALL_VECTOR,&system_call)

– This is done in entry.S and creates a user privilege descriptor
at entry 128 (the syscall_vector) pointing to the address of
the syscall handler (in that case, system_call)

Power Platform – system calls

• PPC interrupt routines are anchored to fixed memory
locations

• In head.S the system does:
. = 0xc00

SystemCall:

EXCEPTION_PROLOG

EXC_XFER_EE_LITE(0xc00, DoSyscall)

Intel Platform – Time interrupts

• Historically used a cascaded pair of Intel 8259 interrupt
controllers

• Now, most of the system uses APIC, which can
emulate the old behavior

• Each interrupt on x86 is assigned a unique number,
known as vector.

• At the interrupt time, this vector is used as index to the
Interrupt Descriptor Table (IDT)

• Uses the Intel 8254 timer with a Programmable Interval
Timer (PIT) – 16-bit down counter – activate an
interrupt in the IRQ0 of the 8259 controller

• Power uses a 32 bit decrementer, built-in in the CPU
(running in the same clock)

• The timer handler is located at the fixed address
0x900:

– In head.S:

EXCEPTION(0x900, Decrementer, timer_interrupt,
EXC_XFER_LITE)

• External interrupts comes in the fixed address 0x500
and are treated in a similar way to the intel IDT jump

Power Platform – Time interrupts

PowerPC Kernel Protection

• The idea of putting the entire kernel as read-only
seems good

• The attacker cannot modify the pages permissions,
since I can use watchpoints to monitor that

• There is no IDT, so if the attacker cannot touch the
memory, everything is protected??

• But... life cannot be perfect...

PowerPC Protection Problems

• From the manual:

“The optional data address breakpoint facility is
controlled by an optional SPR, the DABR. The data
address breakpoint facility is optional to the
PowerPC architecture. However, if the data
address breakpoint facility is implemented, it is
recommended, but not required, that it be
implemented as described in this section.”

 The architecture does not include execution
breakpoints too.

PowerPC 32 Debugging...

DAB BT DW DR
0 28 29 30 31

0–28 DAB Data address breakpoint
29 BT Breakpoint translation enable
30 DW Data write enable
31 DR Data read enable

A match will generate a DSI Exception, which you can check in
the DSISR register bit 9 (set if it is a DABR match)

PowerPC 4xx Study

• Debug Control Registers: DBCR 0-2

• Data Address Compare Registers: DAC 1-2

• Instruction Address Compare Registers: IAC 1-4

• Data Value Compare Registers: DVC 1-2

Detail: A patch has been sent to the linux kernel to include the DAC
support. In anyway, it can be used directly just using the mtspr
instruction to load the specified address in the register

Detail2: Cache management instructions are treated as 'loads', so
will trigger the watchpoints

Detail3: Platform also supports Watchdogs, but if the interrupts are
disabled, they will not trigger in anyway

PPC 4xx Study

• Supports different conditions:

– DBCR0[RET]=1 – Return exception

– DBCR0[ICMP]=1 – Instruction completion

– DBCR0[IRPT]=1 – Interruption

– DBCR0[BRT]=1 – Branch

– DBCR0[FT]=1 – Freeze the decrementer timers

– Others...

• To enable debug interrupts:

– MSR[DE] = 1 and DBCR0[IDM]=1

• Using the IAC (DBCR1[IAC1ER, IAC2ER, IAC3ER, IAC4ER]) I can
choose to monitor the effective or the real address

• I can also instrument an external debug system, setting DBCR0[EDM]
to 1 and using a JTAG interface

PPC 405EP and Firmware
instrumentation

• I2C interface between the real system and the
embedded processor

• PowerPC Initialization Boot Software (PIBS). Source
code is provided.

• Embedded PowerPC Operating System (EPOS).
Source code is provided.

• Not a hackish, it's offered by the companies ;)

• cpc925_read addr numbytes and cpc925_read_vfy
addr numbytes mask0[.mask1] data0[.data1]
commands

PPC 405EP and Firmware
instrumentation
• From the manual:

“Synopsis

 Read and display memory in the PPC970FX address space using the PPC405EP
service processor. The service processor accesses the CPC925 processor interface via
its connection to the CPC925 I2C slave.

Command Type

 PIBS shell command or initialization script command.

Syntax

 cpc925_read addr numbytes

Parameters

 addr The least significant 32 bits of the 36 bit PPC970FX
physicaladdress to read. The 4 most significant physical address bits are

 assumed to be zero.

 numbytes The number of bytes to read and display.“

SMM and Anti-Forensics?

• Duflot paper released a way to turn off BSD protections using SMM
• A better approach can be done using SMM, just changing the privilege level

of a common task to RING 0
• The segment-descriptor cache registers are stored in reserved fields of the

saved state map and can be manipulated inside the SMM handler
• Someone can just change the saved EIP to point to his task and also the

privilege level, forcing the system to return to his task, with full memory
access

• Since the SMRAM is protected by the hardware itself, it is really difficult to
detect this kind of rootkit

Descriptor Cache

• From the Intel Manual: “Every segment register has a “visible”
part and a “hidden” part. (The hidden part is sometimes referred
to as a “descriptor cache” or a “shadow register.”) When a
segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment
register with the base address, segment limit, and access
control information from the segment descriptor pointed to by
the segment selector. “

• RPL – Request Privilege Level

• CPL – Current Privilege Level

• DPL – Descriptor Privilege Level

Descriptor Cache

• In the saved state map (inside SMM – this values
differ from Intel Manual just because I tested in an
old machine):

• TSS Descriptor Cache (12-bytes) - Offset: 7FA4

• IDT Descriptor Cache (12-bytes) - Offset: 7F98

• GDT Descriptor Cache (12-bytes) - Offset: 7F8C

• LDT Descriptor Cache (12-bytes) - Offset: 7F80

• GS Descriptor Cache (12-bytes) - Offset: 7F74

• FS Descriptor Cache (12-bytes) - Offset: 7F68

• DS Descriptor Cache (12-bytes) - Offset: 7F5C

• SS Descriptor Cache (12-bytes) - Offset: 7F50

• CS Descriptor Cache (12-bytes) - Offset: 7F44

• ES Descriptor Cache (12-bytes) - Offset: 7F38

Future

• Some advanced hardware, like pSeries support
firmware services to abstract portions of the hardware
of the operating system

• pSeries for example has the RTAS (run-time
abstraction service) to easily access NVRAM and
heartbeat mechanics

• This operating system running in the firmware maybe
modified to offer integrity verification

Other approaches

• PaX KernSeal – compiler modifications – not released
yet

• Maryland Info-Security Labs Co-pilot and others
(firewire, tribble, etc) – PCI Card to analyze the system
integrity – cache/relocation attacks, Joanna ideas,
hardware based

• Intel System Integrity Services – SMM-based
implementation – depends on external hardware (also
uses client/server signed heartbeats)

• Microsoft PatchGuard – Self-encryption and kernel
instrumentation – many problems spotted by
uninformed.org articles

REFERENCES

Spender public exploit:
http://seclists.org/dailydave/2007/q1/0227.html

Pax Project:
http://pax.grsecurity.net

Joanna Rutkowska:
http://www.invisiblethings.org

Julio Auto @ H2HC – Hackers 2 Hackers Conference:
http://www.h2hc.org.br

A Tamper-Resistant, Platform-Based, Bilateral - INTEL
Approach to Worm Containment

Runtime Integrity and Presence Verification for
Software Agents - INTEL

BIOS and Kernel Developer´s Guide for AMD Athlon 64 and AMD Opteron
Processors - AMD

Intel Architecture Software Developer´s Manual
Volume 3: System Programming

Security Issues Related to Pentium System Management Mode
Loïc Duflot

http://seclists.org/dailydave/2007/q1/0227.html
http://pax.grsecurity.net/
http://www.invisiblethings.org/
http://www.h2hc.org.br/

Acknowledges

Spender for help into many portions of the model

PaX Team for solving doubts about PaX and giving many help point directly to the pax
implementation code

All conferences that trusted me as a speaker

Special tks to Troopers organizers, for give me a chance to show this research results!

Your patience!

Let's stop this bullshit and drink ;D

 Just kidding, I know it's morning!Just kidding, I know it's morning!

End! Really is?

Questions?

Rodrigo Rubira Branco
(BSDaemon)

<rodrigo *noSPAM* kernelhacking . com>
<rodrigo *noSPAM* risesecurity . org>

Thank you :D

