ERNW
j Living Security.

The Art of Reversing
A structured Approach

Michael Thumann

® Reversing by Michael Thumann 4/21/08 1

. ERNWV
#whoami j Living Security.

"= Head of Research & Chief Security Officer, ERNW GmbH

= Recent Talks and Publications:
= “Hacking SecondLife”, Hack-in-the-Box, Dubai 2008
= “Reversing — A structured approach”, RSA, San Francisco 2008
= “Hacking Second Life”, Blackhat, Amsterdam, 2008
= “Hacking the Cisco NAC Framework”, Sector, Toronto, 2007
= “Hacking SecondLife”, Daycon, Dayton 2007
= “Hacking Cisco NAC”, Hack-in-the-Box, Kuala Lumpur, 2007
= “‘NAC@ACK”, Blackhat-USA, Las Vegas, 2007
= “‘NAC@ACK”, Blackhat-Europe, Amsterdam, 2007
= “Mehr IT-Sicherheits durch PenTests”, Book published by Vieweg 2005

= Whatl like to do
= Breaking things ;-) and all that hacker stuff

= Diving (you would be surprised what IT-Security lessons you can learn
from diving)

= Contact Details:
* Email: mthumann@ernw.de / Web: hitp://www.ernw.de

Reversing by Michael Thumann 4/21/08

ERNW
#whois ERNW GmbH j Living Security.

= Founded in 2001

= Based in Heidelberg, Germany (+ small office in Lisbon, PT)
= Network Consulting with a dedicated focus on InfoSec

= Current force level: 18 employees

= Key fields of activity:

= Audit/Penetration-Testing
* Risk-Evaluation & -Management, Security Management
= Security Research

= Our customers: banks, federal agencies, internet providers/
carriers, large enterprises

Reversing by Michael Thumann 4/21/08

ERNW
Ag enda j Living Security.

= Part 1 — Introduction (very short)

= Why Reverse Engineering and why a structured approach

= Part 2 - Needed Know How

= All you need to know in order to do it :-)

= Part 3 — Tools of the Trade
= The Toolset — tools used at ERNW

= Part 4 — The structured Approach

= How to make life more easy

= Part 5 — Exercises
= Time to wake up guys

® Reversing by Michael Thumann 4/21/08 4

ERNW
j Living Security.

Part 1 - Introduction

® Reversing by Michael Thumann 4/21/08 5

o ERNW
Reverse Engineering Ninjitsu 1@ Living Security.

= Not many people can do it

= Ninjas are invisible and can appear and \
disappear at any time /)

= Ninjas are all magicians !

= Ninjas are the bad guys

= But many people would like to know all that
magic

"= You can’t learn it from books, because the
magic is not in the books

Reversing by Michael Thumann 4/21/08

Reverse Engineering Ninjitsu - EHNVV
demystified j Living Security.

It’s not magic
It’s all about Knowledge \

It’s all about the right techniques
It’s all about the right weapons

And it’s all about the right combination
of knowledge, techniques and weapons

® Reversing by Michael Thumann 4/21/08 7

ERNWV

Reverse Engineering - Definition 1@ Living Security.

= js the process of discovering the technological principles
of a device or object or system through the analysis of its
structure and functions. It often involves taking something
(mechanical device, electronic component, software
program) apart and analyzing its workings in detail,
usually to try to make a new device or program that does
the same thing without copying anything from the original.

Reversing by Michael Thumann 4/21/08

ERNWV
Why Reversing? 10 LivingI Security.

= Because you need to know how the stuff is working

= Because Applications are very often distributed as
binaries only

= Because a customer wants you to answer the question “Is
this application secure?”

= Because finding security flaws is pretty cool and makes a
good reputation for you and your company

= ... and there are much more reasons ;-)

Reversing by Michael Thumann 4/21/08

ERNWV
Why structured j Living Security.

= Because Reversing all stuff needs to much time
= Because time is money ;-)

= Because the customer doesn’t want to pay us for years to
answer his question

= Because you won’t get a result when you get lost in tons
of code

® Reversing by Michael Thumann 4/21/08

ERNW
j Living Security.

Part 2 - Needed Know How

® Reversing by Michael Thumann 4/21/08

ERNWV
Needed Know 1@ Living Security.

* Processor Architecture (RISC vs. CISC, Little vs. Big
Endian and so forth)

= Assembler (there’s more than one dialect ;-))
= OS internals

= OS API

= Commonly used programming languages

= Debugging

= Tool usage

= ... and sometimes the ability to think in a way other people
don’t

Reversing by Michael Thumann

ERNW
j Living Security.

Part 3 — Tools of the Trade

Reversing by Michael Thumann 4/21/08

ERNWV
Needed Tools 1@ Living Security.

= Disassembler

= Decompiler

= API Monitor

= Debugger

= Code Coverage Tools
= Sniffer

* Documentation ©

* Your brain ©

® Reversing by Michael Thumann 4/21/08

ERNWV

Commercial Must Have Tools 1@ Living Security.

= Disassembler: IDA Pro Advanced
= Decompiler: Hex-Rays (IDA Plugin)
= API Monitor: Autodebug Professional

® Reversing by Michael Thumann 4/21/08

ERNW
IDA Pro j Living Security.

= The famous and allmighty Disassembler

= Available for Windows, Linux and Mac OS X

= Commercial Product ($515 to $985)

= Debugger included that also supports debugging of PDAs
* Programmable and extensible (SDK included)

= Moved from Datarescue to Hex-Rays at the beginning of
2008

* Further Information at www.hex-rays.com

April 21, 2008 NAC
@ACK

. ERNWV
Hex-Rays Decompiler —_ P Living Security

= First Decompiler that produces more than crap
= Build by lifak Guilfanov (think IDAPro ©)
* Released as commercial Addon for IDA (ca. $2.000)

= Planned: API to support Decompiler Plugins like
Vulnerability Analyzer and others (First SDK Beta already
released)

= Planned: Type and Function Prototype Recovery
= Planned: Assembler Knowledge not needed anymore
= Further Information at www.hex-rays.com

® 17 April 21, 2008 NAC
@ACK

ERNWV
Autodebug API| Monitor 1@ Living Security.

= Debugger and APl Monitor

= Watch the function calls and see the parameters passed to
the function

= Commercial Tool ($299)

= Remote Debugging using a debug agent

= Used in our Cisco NAC Research and saved so much time
= Further Information at www.autodebug.com

April 21, 2008 NAC
@ACK

ERNWV
Free Tools j Living Security.

= Debugger: OllyDBG (www.ollydbg.de)
= Debugger: Immunity Debugger (www.immunitysec.com)
= Sniffer: Wireshark (www.wireshark.net)

= Decompiler: Boomerang (boomerang.sourceforge.net),
free, but the output is more or less useless

= Code Coverage: PAIMEI (pedram.openrce.org/PAIMEI)
= Others: Log files ;-))

Reversing by Michael Thumann

ERNWV

More Commercial Tools 1@ Living Security.

= HBGary Inspector: Cool AllinOne Tool, but more pricy (7K
Bucks), but also worth a look

= Zynamics BinNavi: Flowcharts and Code Coverage (about
5k bucks)

Reversing by Michael Thumann

ERNW
j Living Security.

Part 4 — The structured Approach

® Reversing by Michael Thumann 4/21/08

The ugly stuff —a structured approach ERNW

j Living Security.

= Step 1: Define the question to answer
= Step 2: Understand the program flow
= Step 3: Identify interesting functions

= Step 4: Figure out the function prototype (used
parameters)

= Step 5: Understand what the function is doing

= Step 6: Do runtime analysis to understand what the
program is doing with input and output data

= Step 7: Use the gained knowledge to answer the question
from Step 1

® Reversing by Michael Thumann 4/21/08

Tools used for the different steps ERNW

j Living Security.

= Step 1: The Brain V1.0

= Step 2: IDAPro

= Step 3: IDAPro

= Step 4: IDAPro / Hex-Rays

= Step 5: IDAPro / Hex-Rays

= Step 6: Autodebug / OllyDBG / Immunity Debugger
= Step 7: The Brain V2.0

® Reversing by Michael Thumann 4/21/08

Time to wake up ©

O
v// Reversing by Michael Thumann 4/21/08

Step 1: The question ERNWV
j Living Security.

= Audit a piece of Software
= Do the developers follow the principles for secure coding?

® Reversing by Michael Thumann 4/21/08

Reversing by Michael Thumann 4/21/08

nE_toit0

‘l
N

1Y ‘1
(i

rrrrrrrrr
,,,,,,,
fq - = _ - "u

\\';-7'! ﬂl_\\\\\\\

2] | —
- m |]

\\\\\\\\\\\\\\ e

"E.\‘“e—— :;\W—f:-_q :
— — — o

Reversing by Michael Thumann 4/21/08

Step 2: Program Flow — ignore everything ERNVV
but user defined functions 1@ Living Security.

Start address | text 00401080 |
End address | text004010B0 |

—Starting direction
v Cross references to
v Cross references from

—Parameters
v Recursive
v Follow only current direction

Recursig

~lanore
v Euxtemals
v Data

v From library functions
v Tolibrary functions

I~ Print comments
v Print recursion dots

oK Cancel Help

Reversing by Michael Thumann

Step 2: Program Flow — Uff © ERNWV

j Living Security.

_mailn

sub_401030 .?an_ﬂﬁlﬂEU sub_401000 sub_401010 sub_401040

sub_ 401113 sub_4011D8

sub_4011AF

sub_40140C

Reversing by Michael Thumann 4/21/08

Step 3: Interessting Functions — Here we ERNVV

are © j Living Security.

—

sub_401030 . sub_401020 sub_401000 sub_401010

sub_401040

sub_ 401113 sub_4011D8

sub_4011AF

sub_40140C

Reversing by Michael Thumann 4/21/08

Step 4: Function Prototypes ERNW

j Living Security.

sub 401000 proc near

var 200= byte ptr -200h
arg 0= dword ptr 4

Internal variable Function argument

® Reversing by Michael Thumann 4/21/08 31

Step 4: Function Prototypes ERNWW

j Living Security.

sub_401000 (arg_0);

arg_0= dword ptr 4

Which type? Pointer or Integer?

You have to look at the place where the function is called
to find out what type is passed to the function

® Reversing by Michael Thumann 4/21/08

Step 4: Function Prototypes ERNWW

j Living Security.

int _ stdcall recu(SOCKET s, char *buf, int len, int flags)

extrn recu:dword ; CODE XREF: _main+16CTp
push eax ; buf
push edx s S
—call ebp : recu
lea ecx, [esp+21508h+buf]
__push ecx /

call sub_u@1888 /
Yuppieh, it‘'s a Pointer to a buffer ©

Reversing by Michael Thumann 4/21/08

Step 4: Function Prototypes - Here we are EF‘:NVV

sub_401000 (char *arg_0);

® Reversing by Michael Thumann 4/21/08

Step 4: Function Prototypes — Or just ERNVV
press F5 and look at the decompiler 1@ Living Security.

sub_401000(const char *a1)
{

char v2;

}
I

® Reversing by Michael Thumann 4/21/08 35

Step 5: Understand what the function is

doing - Example 1

dump proc near

var_200= byte ptr -286h
buffer= dword ptr 4

sub esp, 286h

or ecx, OFFFFFFFFh

Xor eax, eax

lea edx, [esp+288h+var_200]
push esi

push edi

mov edi, [esp+2088h+buffer]
repne scasb

not ecx

sub edi, ecx

mov eax, ecx

mov esi, edi

mov edi, edx

shr ecx, 2

rep movsd

mov ecx, eax

Xor eax, eax

and ecx, 3

rep movsb

lea edi, [esp+2088h+var_2060]
or ecxX, OFFFFFFFFh

repne scasb

Reversing by Michael Thumann

not ecx

dec ecx

push ecx

push offset Format ; "'Len
call _printf

lea ecx, [esp+218h+var_2060]
push ecx

push offset aRecvS ; "'Recvu:
call _printf

add esp, 16h

pop edi

pop esi

add esp, 2086h

retn

dump endp

ERNW
j Living Security.

: %iwn"

%S\nll

Step 5: Understand what the function is ERNVV
doing - Example 1 (Decompiler) 1@ Living Security.

int cdecl dump{char =xbuffer)

{
char v2; /7 |[sp+8h] [bp-20606h]@1

strecpy{&v2, buffer);
printf(“Len : %i\n", strlen(&v2) - 1);
return printf{"Recv: %s\n", &u2);

;
I

® Reversing by Michael Thumann 4/21/08 37

Step 5: Understand what the function is ERNVV
doing — Example 2 1@ Living Security.

Don’t worry ©
| can’t read it too
but it's assembler

g_ ey _.:

i_;_: 11

FRREREREGEE

Reversing by Michael Thumann 4/21/08

int _ cdecl main{int argc, const char =x*argv, const cha

{

Step 5: Understand what the function is ERNVV

doing — Example 2 (Decompiler)

const char =*xu3; 7/ ebx@1

u_short vi; // di@2

SOCKET vé6; /7 esi@6

SOCKET v7; /7 eax@6

char =u8; /7 eax@7

char *vu9; /7 eax@10

char =vu10; /7 eax@13

SOCKET v11; // edzx@15

struct WSAData WSAData; // [sp+206h] [bp-212Ch]@%4
struct sockaddr name; // [sp+Ch] [bp-2146h]@9
int addrlen; /7 [kp+18h] [bp-2138h]@15

char buffer; /7 [sp+1B6Bh] [bp-1F9Ch]E@15

u3 = argu;
if { *(argu + 1))
vl = atoi{={argu + 1));

else
uli = 5432;
if (tusaStartup(Bx161u, &WSabata))
{
v/ = WSASocketA(2, 1, 6, 6, 8, 8);
ub = v/,
if ((signed int)uv7 < 8)
{

v = strerror(dword_4899C8);

fprintf{&File, "%s: WSASocket - %s\n', *=u3, uB);

exit{1);

Reversing by Michael Thumann

j Living Security.

name.sa_family = 2;

*{_DWORD =)&name.sa_data[6] = 0;

*(_ DWORD =)&nane.sa_data[18] = 0;

*(_ DWORD =)&name.sa_data[2] = 8;

*(WORD =)&name.sa_data[8] = htons{uvi);
if (bind{v6, &nanme, 16) < 8)

{
v9 = strerror{dword_4699C8);
fprintf{&File, "%s: bind - %s\n", *u3, v0);
exit{1);

b

if { listen{vs, 1) < 8)

{
vi8 = strerror{dword_4699C8);
fprintf(&File, "%s: listen - %s\n", =u3, vl0);
exit(1);

b

while {(1)

{
addrlen = 16;
v11 = accept(uvs, &name, &addrlen);
memset{&buffer, 68, OX1F9Cu);
recu{(uill, &buffer, 8092, 8);
dump(&buffer);

b

b
return 0;

ERNW
j Living Security.

= |nstead of watching Stack variables in a standard
debugger, a look at the function call would be much more

easier
= Autodebug will help to do that, but first autodebug must
know the function

Step 6: Runtime Analysis

® Reversing by Michael Thumann 4/21/08

Autodebug without Debug Symbols ERNWV

j Living Security.

= Step 1: Generate map file within IDAPro

= Step 2: Run binary with autodebug

= Step 3: Load Map File in autodebug

= Step 4: Generate PDB Template (it’s a VS6 Project)
= Step 5: Close autodebug

Reversing by Michael Thumann

Autodebug without Debug Symbols ERNWV

j Living Security.

= Step 6: Fill in the known function prototype (gained from
IDAPro / Hex-Rays Analysis) into your PDB template

= Step 7: Compile

= Step 8: Use PDB File (Program Debug Database) with
Autodebug (copy into pdbfiles directory)

= Step 9: Load Map File in autodebug

= Step 10: Select functions to monitor

= Step 11: See which parameters are passed to the function
and which values are returned

Reversing by Michael Thumann

Auto Debug Professional V5.0

J File View Tool Help

N ERIREICELEE

Auto Debug Professional V5.0

J File View Tool Help

N ERIREICELEE

Step 6: Runtime Analysis ERNWW

j Living Security.

= Code Coverage Analyzer can help to determine which
functions are called during runtime

= One of PAIMEIs functions is Code Coverage

= PAIMEI interacts with IDAPro and has a lot more
functionality build in

= Code Coverage helps to focus on interessting functions
that are called

= Find PAIMEI at paimei.openrce.org

Reversing by Michael Thumann

Connections Advanced Help

777

PAIMEIldocs

fom

PAIMElexplore

PAIME filefuzz

PAIMEIconsole s O X
Data Sources Data Exploration Data Capture
| Refresh Target List # | er | ™o | Module | Func? | Tag =1 | Refresh Process List
- F 267 0042bfof 4772 srv.exe Y Tagl = N
E Avaiable Jargely 28 00439780 4772 srv.exe ¥ Tagl it | i =
[Example 269 00433245 4772 srv.exe ¥ Tagi 2040 SmSs.exe 7
270 00439272 4772 srv.exe Y Tagl 568 csrss.exe E
271 0042b4zb 4772 stv.exe ¥ Tagl = winlogon.exe
nn Aransasn A R v —— 824 services.exe —]
Functions: 278 / 1557 Basic Blocks: 1983 / 12360 836 |sass.exe
IIIIII | III 1156 ibmpmsvc.exe
L 1184 atizevxx.exe
Dereferenced Data ggg :zag:::ﬁ:
E\fg 03843% 2%:51 ;50 2007 7_] 1664 svchost.exe
: a 1736 S24EvMon.exe
EAX: 00000000 0) —>)
EBX: 00000000 (0) —> o Svc s exe
ECX: 00000000 ¢ o)y —> 740 olsv.exe
EDX: 00000000 ¢ 0y —»> 044 :’L‘;m'
EDI: 00000000 { 0y —> 1 riMorSve.exe
ESI: 00000000 (a) —> 1212 avmbtservice.exe
EBP: 00000000 (0) -> 1336 panapp.exe
ESP: 00000000 0y —> 1392 avp.exe
PIDA Modules +04: 00000000 ¢ o) —» 1412 svchost.exe
#Func | #68 | oA | +08: 00000000 ¢ 0) -> 1524 btwdnsexe =
1557 12360 srv.exe IE% ggg g g g gg % g ; : ; Load: |Z:\Worlshops\Reversing\Demo\c| | Browse]
Coverage Depth
(® Functions
(O Basic Blocks
g [JRestoreBPs [|Heavy Unhandled Only
v
Add Module(s) [& ||| Start Stalking |

R EEEEEEEEEE)

debugger hit 0042de6d0 cc #248
debugger hit 0042b258 cc #249
debugger hit 0042d700 cc #250
debugger hit 0042b262 cc #251
debugger hit 0042d730 cc #252
debugger hit 0042b74e cc #253
debugger hit 0042dcl0 cc #254
debugger hit 0042c261 cc #255
debugger hit 00431ef0 cc #256
debugger hit 00432160 cc #257
debugger hit 0042b30c cc #258
debugger hit 00434140 cc #259
debugger hit 0042b5as cc #260
debugger hit 0043c640 cc #261
debugger hit 0042b811 cc #262
debugger hit 00470140 cc #263
debugger hit 0042b6c2 cc #264
debugger hit 004398e0 cc #265
debugger hit 00439900 cc #266
debugger hit 0042bfof cc #267
debugger hit 00439780 cc #268
debugger hit 0043%9a45 cc #269
debugger hit 00439a72 cc #270
debugger hit 0042b4ab cc #271
debugger hit 00436410 cc #272
debugger hit 00436534 cc #273
debugger hit 00432280 cc #274
debugger hit 0042b6ed cc #275
debugger hit 00432370 cc #276
debugger hit 0042b22b cc #277
debugger hit 00432320 cc #278
Exporting 278 hits to MysqQL.
Resetting filter 1ist and stalk tag.
Resetting filter 1ist and stalk tag.
Function coverage at 0%. Basic block coverage at 0%.
Function coverage at 17%. Basic block coverage at 16%.
Function coverage at 0%. Basic block coverage at 0%.
Function coverage at 0%. Basic block coverage at 0%.
Function coverage at 0%. Basic block coverage at 0%.
Resetting filter 1ist and stalk tag.
Function coverage at 17%. Basic block coverage at 16%.
Resetting filter 1ist and stalk tag.

| KT

I_Suc«.:essf"ully connected to uDraw(Graph) server at 127.0.0.1.

| Process Stalker

=

Step 7: Answer the question ERNWW
j Living Security.

= Ok, summary anyone?

= |s the program secure?

® Reversing by Michael Thumann 4/21/08

Final Conclusions ERNWV
j Living Security.

* This approach works (at least for us ©)

= Can you answer every question? No you can’t (think of
code obfuscation, anti RE functions and so forth where
additional steps are needed)

= You don’t have to be an assembler guru to work with this
approach, but don’t forget that you still need skilled
people

= You still can improve for example code coverage with
commercial tools

Reversing by Michael Thumann

ERNW
j Living Security.

Thank’s for your patience

Time left for "questions & answers™ ?

4/21/08 Reversing by Michael Thumann

