
1 Reversing by Michael Thumann 4/21/08 1

The Art of Reversing
 A structured Approach

Michael Thumann

2 Reversing by Michael Thumann 4/21/08

#whoami

  Head of Research & Chief Security Officer, ERNW GmbH

  Recent Talks and Publications:
  “Hacking SecondLife”, Hack-in-the-Box, Dubai 2008
  “Reversing – A structured approach”, RSA, San Francisco 2008
  “Hacking Second Life”, Blackhat, Amsterdam, 2008
  “Hacking the Cisco NAC Framework”, Sector, Toronto, 2007
  “Hacking SecondLife”, Daycon, Dayton 2007
  “Hacking Cisco NAC”, Hack-in-the-Box, Kuala Lumpur, 2007
  “NAC@ACK”, Blackhat-USA, Las Vegas, 2007
  “NAC@ACK”, Blackhat-Europe, Amsterdam, 2007
  “Mehr IT-Sicherheits durch PenTests”, Book published by Vieweg 2005

  What I like to do
  Breaking things ;-) and all that hacker stuff
  Diving (you would be surprised what IT-Security lessons you can learn

from diving)

  Contact Details:
  Email: mthumann@ernw.de / Web: http://www.ernw.de

2 4/21/08

3 Reversing by Michael Thumann 4/21/08

#whois ERNW GmbH

  Founded in 2001

  Based in Heidelberg, Germany (+ small office in Lisbon, PT)

  Network Consulting with a dedicated focus on InfoSec

  Current force level: 18 employees

  Key fields of activity:

  Audit/Penetration-Testing
  Risk-Evaluation & -Management, Security Management
  Security Research

  Our customers: banks, federal agencies, internet providers/
carriers, large enterprises

4 Reversing by Michael Thumann 4/21/08 4

Agenda

  Part 1 – Introduction (very short)
  Why Reverse Engineering and why a structured approach

  Part 2 – Needed Know How
  All you need to know in order to do it :-)

  Part 3 – Tools of the Trade
  The Toolset – tools used at ERNW

  Part 4 – The structured Approach
  How to make life more easy

  Part 5 – Exercises
  Time to wake up guys

5 Reversing by Michael Thumann 4/21/08 5

Part 1 - Introduction

6 Reversing by Michael Thumann 4/21/08 6

Reverse Engineering Ninjitsu

  Not many people can do it
  Ninjas are invisible and can appear and

disappear at any time
  Ninjas are all magicians !
  Ninjas are the bad guys
  But many people would like to know all that

magic
  You can’t learn it from books, because the

magic is not in the books

7 Reversing by Michael Thumann 4/21/08 7

Reverse Engineering Ninjitsu -
demystified

  It’s not magic
  It’s all about Knowledge
  It’s all about the right techniques
  It’s all about the right weapons
  And it’s all about the right combination

of knowledge, techniques and weapons

8 Reversing by Michael Thumann 4/21/08 8

Reverse Engineering - Definition

  is the process of discovering the technological principles
of a device or object or system through the analysis of its
structure and functions. It often involves taking something
(mechanical device, electronic component, software
program) apart and analyzing its workings in detail,
usually to try to make a new device or program that does
the same thing without copying anything from the original.

9 Reversing by Michael Thumann 4/21/08 9

Why Reversing?

  Because you need to know how the stuff is working
  Because Applications are very often distributed as

binaries only
  Because a customer wants you to answer the question “Is

this application secure?”
  Because finding security flaws is pretty cool and makes a

good reputation for you and your company
  … and there are much more reasons ;-)

10 Reversing by Michael Thumann 4/21/08 10

Why structured

  Because Reversing all stuff needs to much time
  Because time is money ;-)
  Because the customer doesn’t want to pay us for years to

answer his question
  Because you won’t get a result when you get lost in tons

of code

11 Reversing by Michael Thumann 4/21/08 11

Part 2 – Needed Know How

12 Reversing by Michael Thumann 4/21/08 12

Needed Know

  Processor Architecture (RISC vs. CISC, Little vs. Big
Endian and so forth)

  Assembler (there’s more than one dialect ;-))
  OS internals
  OS API
  Commonly used programming languages
  Debugging
  Tool usage
  … and sometimes the ability to think in a way other people

don’t

13 Reversing by Michael Thumann 4/21/08 13

Part 3 – Tools of the Trade

14 Reversing by Michael Thumann 4/21/08 14

Needed Tools

  Disassembler
  Decompiler
  API Monitor
  Debugger
  Code Coverage Tools
  Sniffer
  Documentation 
  Your brain 

15 Reversing by Michael Thumann 4/21/08 15

Commercial Must Have Tools

  Disassembler: IDA Pro Advanced
  Decompiler: Hex-Rays (IDA Plugin)
  API Monitor: Autodebug Professional

April 21, 2008 NAC
@ACK

by
Michae

l

16

IDA Pro

  The famous and allmighty Disassembler
  Available for Windows, Linux and Mac OS X
  Commercial Product ($515 to $985)
  Debugger included that also supports debugging of PDAs
  Programmable and extensible (SDK included)
  Moved from Datarescue to Hex-Rays at the beginning of

2008
  Further Information at www.hex-rays.com

April 21, 2008 NAC
@ACK

by
Michae

l

17

Hex-Rays Decompiler

  First Decompiler that produces more than crap
  Build by Ilfak Guilfanov (think IDAPro )
  Released as commercial Addon for IDA (ca. $2.000)
  Planned: API to support Decompiler Plugins like

Vulnerability Analyzer and others (First SDK Beta already
released)

  Planned: Type and Function Prototype Recovery
  Planned: Assembler Knowledge not needed anymore
  Further Information at www.hex-rays.com

April 21, 2008 NAC
@ACK

by
Michae

l

18

Autodebug API Monitor

  Debugger and API Monitor
  Watch the function calls and see the parameters passed to

the function
  Commercial Tool ($299)
  Remote Debugging using a debug agent
  Used in our Cisco NAC Research and saved so much time
  Further Information at www.autodebug.com

19 Reversing by Michael Thumann 4/21/08 19

Free Tools

  Debugger: OllyDBG (www.ollydbg.de)
  Debugger: Immunity Debugger (www.immunitysec.com)
  Sniffer: Wireshark (www.wireshark.net)
  Decompiler: Boomerang (boomerang.sourceforge.net),

free, but the output is more or less useless
  Code Coverage: PAIMEI (pedram.openrce.org/PAIMEI)
  Others: Log files ;-))

20 Reversing by Michael Thumann 4/21/08 20

More Commercial Tools

  HBGary Inspector: Cool AllinOne Tool, but more pricy (7K
Bucks), but also worth a look

  Zynamics BinNavi: Flowcharts and Code Coverage (about
5k bucks)

21 Reversing by Michael Thumann 4/21/08 21

Part 4 – The structured Approach

22 Reversing by Michael Thumann 4/21/08 22

The ugly stuff –a structured approach

  Step 1: Define the question to answer
  Step 2: Understand the program flow
  Step 3: Identify interesting functions
  Step 4: Figure out the function prototype (used

parameters)
  Step 5: Understand what the function is doing
  Step 6: Do runtime analysis to understand what the

program is doing with input and output data
  Step 7: Use the gained knowledge to answer the question

from Step 1

23 Reversing by Michael Thumann 4/21/08 23

Tools used for the different steps

  Step 1: The Brain V1.0
  Step 2: IDAPro
  Step 3: IDAPro
  Step 4: IDAPro / Hex-Rays
  Step 5: IDAPro / Hex-Rays
  Step 6: Autodebug / OllyDBG / Immunity Debugger
  Step 7: The Brain V2.0

24 Reversing by Michael Thumann 4/21/08 24

Time to wake up 

25 Reversing by Michael Thumann 4/21/08 25

Step 1: The question

  Audit a piece of Software
  Do the developers follow the principles for secure coding?

26 Reversing by Michael Thumann 4/21/08 26

Step 2: Program Flow - Flowchart

27 Reversing by Michael Thumann 4/21/08 27

Step 2: Program Flow – From main

Main

28 Reversing by Michael Thumann 4/21/08 28

Step 2: Program Flow – ignore everything
but user defined functions

29 Reversing by Michael Thumann 4/21/08 29

Step 2: Program Flow – Uff 

30 Reversing by Michael Thumann 4/21/08 30

Step 3: Interessting Functions – Here we
are 

31 Reversing by Michael Thumann 4/21/08 31

Step 4: Function Prototypes

 sub_401000 proc near

 var_200= byte ptr -200h
 arg_0= dword ptr 4

Function argument Internal variable

32 Reversing by Michael Thumann 4/21/08 32

Step 4: Function Prototypes

 sub_401000 (arg_0);

 arg_0= dword ptr 4

You have to look at the place where the function is called
to find out what type is passed to the function

Which type? Pointer or Integer?

33 Reversing by Michael Thumann 4/21/08 33

Step 4: Function Prototypes

Yuppieh, it‘s a Pointer to a buffer 

34 Reversing by Michael Thumann 4/21/08 34

Step 4: Function Prototypes - Here we are

sub_401000 (char *arg_0);

35 Reversing by Michael Thumann 4/21/08 35

Step 4: Function Prototypes – Or just
press F5 and look at the decompiler

sub_401000(const char *a1)
{
 char v2;

 …
}

36 Reversing by Michael Thumann 4/21/08 36

Step 5: Understand what the function is
doing - Example 1

37 Reversing by Michael Thumann 4/21/08 37

Step 5: Understand what the function is
doing - Example 1 (Decompiler)

38 Reversing by Michael Thumann 4/21/08 38

Step 5: Understand what the function is
doing – Example 2

Don’t worry 
I can’t read it too
but it’s assembler

39 Reversing by Michael Thumann 4/21/08 39

Step 5: Understand what the function is
doing – Example 2 (Decompiler)

40 Reversing by Michael Thumann 4/21/08 40

Step 6: Runtime Analysis

  Instead of watching Stack variables in a standard
debugger, a look at the function call would be much more
easier

  Autodebug will help to do that, but first autodebug must
know the function

41 Reversing by Michael Thumann 4/21/08 41

Autodebug without Debug Symbols

  Step 1: Generate map file within IDAPro
  Step 2: Run binary with autodebug
  Step 3: Load Map File in autodebug
  Step 4: Generate PDB Template (it’s a VS6 Project)
  Step 5: Close autodebug

42 Reversing by Michael Thumann 4/21/08 42

Autodebug without Debug Symbols

  Step 6: Fill in the known function prototype (gained from
IDAPro / Hex-Rays Analysis) into your PDB template

  Step 7: Compile
  Step 8: Use PDB File (Program Debug Database) with

Autodebug (copy into pdbfiles directory)
  Step 9: Load Map File in autodebug
  Step 10: Select functions to monitor
  Step 11: See which parameters are passed to the function

and which values are returned

43 Reversing by Michael Thumann 4/21/08 43

Autodebug without Debug Symbols

44 Reversing by Michael Thumann 4/21/08 44

Autodebug without Debug Symbols

45 Reversing by Michael Thumann 4/21/08 45

Step 6: Runtime Analysis

  Code Coverage Analyzer can help to determine which
functions are called during runtime

  One of PAIMEIs functions is Code Coverage
  PAIMEI interacts with IDAPro and has a lot more

functionality build in
  Code Coverage helps to focus on interessting functions

that are called
  Find PAIMEI at paimei.openrce.org

46 Reversing by Michael Thumann 4/21/08 46

Step 6: Runtime Analysis

47 Reversing by Michael Thumann 4/21/08 47

Step 6: Runtime Analysis

48 Reversing by Michael Thumann 4/21/08 48

Step 7: Answer the question

  Ok, summary anyone?
  Is the program secure?

49 Reversing by Michael Thumann 4/21/08 49

Final Conclusions

  This approach works (at least for us )
  Can you answer every question? No you can’t (think of

code obfuscation, anti RE functions and so forth where
additional steps are needed)

  You don’t have to be an assembler guru to work with this
approach, but don’t forget that you still need skilled
people

  You still can improve for example code coverage with
commercial tools

50 Reversing by Michael Thumann 4/21/08

Thank’s for your patience

Time left for `questions & answers` ?

