
Dynamic Program Analysis and Software Exploitation
From the crash to the exploit code

Rodrigo Rubira Branco (BSDaemon)
Founder Dissect || PE – Now the Qualys Vulnerability & Malware Research Lab

rodrigo *noSPAM* kernelhacking.com
http://twitter.com/bsdaemon

2 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Agenda

§  Objectives
§  History
§  Introduction

§  Concepts of Taint Analysis

–  Taint Sources
–  Intermediate Languages and Tainted Sources
–  Explosion of Watched Data

§  Backward Taint Analysis

–  From the crash to the exploit code

§  Existent solutions and comparisions

§  Future

3 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Objectives

§  Explain my latest Phrack Article

§  Demonstrate how vulnerability finding works (or is

supposed to work)

§  Give some concepts about program analysis for

vulnerability exploitation

§  Explain the challenges the exploit writer faces nowadays

§  Be fun?

4 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Security nowadays (yeap, again the same slides)

§  Buggy programs deployed on critical servers

§  Rapidly-evolving threats, attackers and tools (exploitation

frameworks)

§  Lack of developers training, resources and people to fix

problems and create safe code

§  That’s why we are here today, right?

5 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Sorry, really sorry

§  Usually I start from the end and here I was supposed to
show an 0day vulnerability in Excel

§  Everything is ready to be presented using the tool that I’ll
explain in the presentation

§  The problem: Microsoft did not issue the patch yet ->
Well, they delayed it (it was supposed to be released in
March, now only in April)
–  I’m not blaming Microsoft, they’ve been very supportive

6 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Security nowadays – 0day challenge

First host
attacked

All vulnerable hosts
attacked

Reaction time
Slammer: 10 mins

Future worms: < 1 minute [Staniford et. al. 2002]

“0day Statistics
Average 0day lifetime:
348 days
Shortest life:
99 days
Longest life:
1080 (3 years)"

- Justine Aitel

7 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

History

§  Original Motivation: Complex client-side vulnerability in a
closed (at the time) file format

§  Extended Motivation: Trying to better analyse hundred
thousands of bugs in word (search for Ben Nagy,
Coseinc)

§  Initial version integrated with a fuzzer, only for Linux
(showed past year here in Troopers)

§  Ported version for Solaris to analyze a vulnerability
released by Secunia in the same software RISE Security
released a vulnerability some time before

§  Thanks to Julio Auto parallel research in the same field,
we created together the WinDBG version presented here

8 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Introduction – What is program analysis for us?

§  Make a computational system reason automatically (or at
least with little human assistance) about the behaviour of
a program and draw conclusions that are somehow
useful

§  Help us to determine exploitability of vulnerabilities, or to
rapidly develop an exploit code

§  The most widely known solution for the exploitability
determination is given by Microsoft: !exploitable

9 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

!exploitable

 _declspec(naked) int main() {
 _asm {
 mov eax, 0x41414141
 call eax
 }

}

10 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

!exploitable

§  This is incorrectly classified as EXPLOITABLE because
the tool always assume that the attacker has control over
all the input operands

§  In this presentation, we are going to try to answer the
question: Are the input operands in the attacker’s
control?

11 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Concepts of Taint Analysis

§  Taint Analysis is one kind of program flow analysis and
we use it to define the influence of external data
(attacker’s controlled data) over the analyzed application

§  Since the information flows, or is copied to, or influence
other data there is a need to follow this influence in order
to determine the control over specific areas (registers,
memory locations). This is a requirement for determine
exploitability

12 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

State Transition for Memory Corruption

c: corrupting instruction
t: takeover instruction
f: faulting instruction

§  Case 1
(green):
Format String

§  Case 2 and 3
(red and
blue): buffer
overflow

§  Case 4
(purple):
unpredictable

Source:
Automatic Diagnosis and
Response to Memory
Corruption Vulnerabilities

13 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

So, what?

§  Legitimate assumption:
–  To change the execution of a program illegitimately we need to

have a value being derived from the attacker’s input (which we
call: controlled by the attacker)

§  String sizes and format strings should usually be
supplied by the code itself, not from external, un-trusted
inputs.

§  Any data originated from or arithmetically derived from
un-trusted source must be inspected.

14 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Taint Analysis

§  Tainted data: Data from un-trusted source

§  Keep track of tainted data (from un-trusted source)

§  Monitors program execution to track how tainted attribute
propagates

§  Detect when tainted data is used in sensitive way

15 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Taint Propagation

§  When a tainted location is used in such a way that a
value of other data is derived from the tainted data (like
in mathematical operations, move instructions and
others) we mark the other location as tainted as well

§  The transitive relation is:
–  If information A is used to derive information B:

»  A->t(B) -> Direct flow
–  If B is used to derive information C:

»  B->t(C) -> Direct flow
»  Thus: A->t(C) -> Indirect flow

§  Due to the transitive nature, you can analyze individual
transitions or the whole block (A->t(C))

16 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Location

§  A location is defined as:
–  Memory address and size
–  Register name (we use the register entirely, not partially -> thus

%al and %eax are the same)
»  When setting a register, I set it higher (setting %al as tainted will

also taint %eax)
»  When clearing a register, I clear it lower

§  To keep track over bit operations in a register it is
important to taint the code-block level of a control flow
graph
–  This create extra complexity due to the existence of the flow

graph and data flow dependencies graph
–  The dependencies graph represents the influence of a source

data in the operation been performed

17 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Taint Sources

§  Any information in the control of the attacker is tainted
(remember the transitive relation of the tainted data)

§  The more tainted information, the bigger the propagation
and the required resources in order to keep track of that

§  Tainted data is only deleted when it receives an
assignment from an untainted source or an assignment
from a tainted source resulting in a constant value not
controlled by the attacker

18 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Flows

§  Explicit flow:
–  mov %eax, A

§  Implicit flow:
–  If (x == 1) y=0;

§  Conditional statements require a special analysis
approach:
–  In our case, we are analyzing the trace of a program (not the

program itself, but only what was executed during the section
that generated the crash)

–  We have two different analysis step: tracing and analysis

19 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Special Situations

§  Partial Tainting: When the untrusted source does not
completely control the tainted data

§  Tainting Merge: When there are two different untrusted
sources being used to derive some data

§  Data
–  In Use: when it is referenced by an operation
–  Defined: when the data is modified

20 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Inheritance problems

Rare
e.g., malloc/free, system calls

Frequent
e.g., memory access,
data movement

Events

Problem: state explosion for binary operations !

mov %eax ß A
mov B ß %eax

taint(%eax) = taint(A)
taint(B) = taint(%eax)

Application Propagation
Tracking

%eax inherits from A
B inherits from %eax

Inheritance
Tracking

add %ebx ß D taint(%ebx) |= taint(D) insert D into %ebx’s
inherit-from list

21 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Tracking Instructions

§  Pure assignments: Easy to track
–  If a tainted location is used to define another location, this new

location will be tainted

§  Operations over strings are tainted when:
–  They are used to calculate string sizes using a tained location

»  a = strlen(tainted(string));
»  Since the ‘string’ is tainted, I assume the attacker controls ‘a’

–  Search for some specific char using a tainted location, defining a
flag if found or not found

»  pointer = strchr(tainted(string), some_char);
»  If (pointer) flag=1;
»  ‘flag’ is tainted if the attacker controls ‘string’ or ‘some_char’

22 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Tracking Instructions

§  Arithmetic instructions with at least one tainted data
usually define tainted results

§  Those arithmetic instructions can be simplified to map to
boolean operations and then the following rules applies

X Y X or Y
0 0 0
0 1 1
1 0 1
1 1 1

OR truth table

X Y X or Y
0 0 0
0 1 0
1 0 0
1 1 1

AND truth table
X Y X or Y
0 0 0
0 1 1
1 0 1
1 1 0

XOR truth table

23 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Arithmetics with Tainted Data

§  OR Operand
–  If the untainted data is 1, the result is untainted
–  If the untainted data is 0, the result is tainted

§  AND Operand
–  If the untainted data is 0, the result is untainted
–  If the untainted data is 1, the result is tainted

§  XOR Operand
–  If it is an xor against itself, the result is untainted
–  Otherwise, the result is tainted

24 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Eflags and Flow Information

§  The eflags register can also be tainted to monitor flags
conditions influencing in operations (and flow)

§  In the presented approach, conditional branches are
taken care due to the trace generated by the WinDBG
plugin (single-stepping)

25 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Backward Taint Analysis

§  Divide the analysis process in two parts:
–  A trace from a good state to the crash (incrementally dumped to

a file) -> Gather substantial information about the target
application when it receives the input data, which is formally
named 'analysis'

–  Analysis of the trace file -> Formally defined as 'verification' step,
where the conclusive analysis is done

26 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

The need for intermediate languages...

§  Assembly instructions have explicit operands, which are
easy to deal with, and sometimes implicit operands:
–  Instruction: push eax

–  Explicit operand: eax

–  What it really does?
»  ESP = ESP – 4 (a substraction)
»  SS:[ESP] = EAX (a move)
»  Here we have ESP and SS as implicit operands

•  Tks to Edgar Barbosa for this great example!

27 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

The tracing step

§  Instead of using an intermediate language, I play straight
with the debugger interfaces (WinDBG)

§  The tracer stores some useful information, like effective
addresses and data values and also simplifies the
instructions for easy parsing:

–  CMPXCHG r/m32, r32 -> 'Compare EAX with r/m32. If equal, ZF
is set and r32 is loaded into r/m32. Else, clear ZF and load r/m32
into AL'

»  Such an instruction creates the need for conditional taints, since by
controlling %eax and r32 the attacker controls r/m32 too.

28 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Tracing File

§  Contains:
–  Mnemonic of the instruction
–  Operands
–  Dependences for the source operand

»  Eg: Elements of an indirectly addressed memory
»  This creates a tree of the dataflow, with a root in the crash

instruction

§  The verification step reads this file and:
–  Search this tree using a BFS algorithm

29 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Theorical Example

§  1-) mov edi, 0x1234 ; dst=edi, src=0x1234
§  2-) mov eax, [0xABCD] ; dst=eax, src=ptr 0xABCD ;

Note 0xABCD is evil addr
§  3-) lea ebx, [eax+ecx*8] ; dst=ebx, src=eax,

srcdep1=ecx
§  4-) mov [edi], ebx ; dst=ptr 0x1234, src=ebx
§  5-) mov esi, [edi] ; dst=esi, src=ptr 0x1234,

srcdep1=edi
§  6-) mov edx, [esi] ; Crash!!!

30 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Theorical Example – The Tree

§  6-) Where does [esi] come from?
§  5-) [edi] is moved to esi, where edi comes from and what

does exist in [edi]?
§  4-) [edi] receives ebx and edi is defined in 1-) from a

fixed value
§  3-) ebx comes from a lea instruction that uses eax and

ecx
§  2-) eax receives a value controlled by the attacker
§  ... ecx is out of the scope here :)

31 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Limitation of the approach

§  Since I only use the trace information, if the crash input
data does not force a flow, I can’t see the influence of
the input over this specific flow data

§  To solve that:
–  If a jmp is dependent of a flag, the attacker controls branch

decision
–  Control over a branch means tainted EIP
–  To define the value of EIP, consider:

»  The address if the jump is taken
»  The address of the next instruction (if the jump is not taken)
»  The value of the interesting flag register (0 or 1)
»  Then: %eip <- (address of the next instruction) + value of the

register flag * (|address if jump is taken – address of the next
instruction|)

32 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Existent Solutions and Comparisions

§  !exploitable
–  Tries to classify unique issues (crashes appearing through different code paths, machines

involved in testing, and in multiple test cases)
–  Quickly prioritizes issues (since crashes appear in thousands, while analysis capabilities

are VERY limited)
–  Group the crashes for analysis

§  Spider Pig
–  Created by Piotr Bania
–  Not available for testing, but from the paper: It is much more advanced them the

provided tool (but well, it is not available?)
»  Virtual Code Integration (or Dynamic Binary Rewriting) -> Discussed in my previous

year presentation about Fuzzers here in Troopers
»  Disputable Objects: Partially controlled data is analyzed using the parent data

§  Taint Bochs
–  Used for tracking sensitive data lifecycle in memory

33 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

§  Taint Check
–  Uses DynamicRIO or Valgrind
–  Taint Seed: Defining the tainted values (data comming from the

network for example)
–  Taint Tracker: Tracks the propagation
–  Taint Assert: Alert about security violations
–  Used while testing software to detect overflow conditions, does nto

really help in the exploit creation
»  In the article I also provided a heap analysis tool for Embedded

Linux Architecture (ARM) since the Memcheck plugin for Valgrind is
not available on this architecture

§  Bitblaze

–  An amazing platform for binary analysis
–  Provides better classification of exploitability (Charlie Miller talk in BH)
–  Can be used as base platform for the provided solution (VINE)

Existent Solutions and Comparisions

34 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

How it works (or is supposed to)

35 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Start tracing

36 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Find something from your input to search
for in memory

37 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Locate the input in the program’s memory

38 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Open the tracing file

39 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Add the taint range

40 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Analyze

41 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Analyze

42 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Analyze

43 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Future

§  I can’t foresee the future!

§  Hope more researchers will contribute in the future

§  The code needs immediate support for extended coverage of
x86 instructions, speed enhancements, introduction of
heuristical detection over user input (so you don’t need to
specify memory ranges to watch)

44 Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Special Thanks

§  To the Troopers Staff, for trusting me once again... This
conference is awesome

§  Prime Security Team, specially Filipe Balestra

§  RISE Security Group, yeah, we still exist, but now
everybody works

§  Special thanks to Julio Auto who developed everything
with me (and besides me, lots of patience I know...)

End! Really !?

Rodrigo Rubira Branco (BSDaemon)
Founder Dissect || PE – Now the Qualys Vulnerability & Malware Research Lab

rodrigo *noSPAM* kernelhacking.com
http://twitter.com/bsdaemon

