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Objectives 

§  Explain my latest Phrack Article 
 
§  Demonstrate how vulnerability finding works (or is 

supposed to work) 
 
§  Give some concepts about program analysis for 

vulnerability exploitation 
 
§  Explain the challenges the exploit writer faces nowadays 
 
§  Be fun? 
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Security nowadays (yeap, again the same slides) 

§  Buggy programs deployed on critical servers 
 
§  Rapidly-evolving threats, attackers and tools (exploitation 

frameworks) 
 
§  Lack of developers training, resources and people to fix 

problems and create safe code 
 
§  That’s why we are here today, right? 
 



5 Kernel Hacking:  If you really know, you can hack! – http://www.kernelhacking.com/rodrigo 

Sorry, really sorry 

§  Usually I start from the end and here I was supposed to 
show an 0day vulnerability in Excel 

§  Everything is ready to be presented using the tool that I’ll 
explain in the presentation 

§  The problem:  Microsoft did not issue the patch yet ->  
Well, they delayed it (it was supposed to be released in 
March, now only in April) 
–  I’m not blaming Microsoft, they’ve been very supportive 
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Security nowadays – 0day challenge 

First host  
attacked 

All vulnerable hosts  
attacked 

Reaction time 
Slammer: 10 mins 

Future worms: < 1 minute [Staniford et. al. 2002] 

“0day Statistics 
Average 0day lifetime:  
348 days  
Shortest life:  
99 days  
Longest life:  
1080 (3 years)" 
 
- Justine Aitel 
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History 

§  Original Motivation:  Complex client-side vulnerability in a 
closed (at the time) file format 

§  Extended Motivation:  Trying to better analyse hundred 
thousands of bugs in word (search for Ben Nagy, 
Coseinc) 

§  Initial version integrated with a fuzzer, only for Linux 
(showed past year here in Troopers) 

§  Ported version for Solaris to analyze a vulnerability 
released by Secunia in the same software RISE Security 
released a vulnerability some time before 

§  Thanks to Julio Auto parallel research in the same field, 
we created together the WinDBG version presented here 
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Introduction – What is program analysis for us? 

§  Make a computational system reason automatically (or at 
least with little human assistance) about the behaviour of 
a program and draw conclusions that are somehow 
useful 

§  Help us to determine exploitability of vulnerabilities, or to 
rapidly develop an exploit code 

§  The most widely known solution for the exploitability 
determination is given by Microsoft:  !exploitable 
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!exploitable 

     _declspec(naked) int main() {  
 _asm {  
  mov eax, 0x41414141  
  call eax  
 }  

}  
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!exploitable 

§  This is incorrectly classified as EXPLOITABLE because 
the tool always assume that the attacker has control over 
all the input operands 

§  In this presentation, we are going to try to answer the 
question:  Are the input operands in the attacker’s 
control? 
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Concepts of Taint Analysis 

§  Taint Analysis is one kind of program flow analysis and 
we use it to define the influence of external data 
(attacker’s controlled data) over the analyzed application 

§  Since the information flows, or is copied to, or influence 
other data there is a need to follow this influence in order 
to determine the control over specific areas (registers, 
memory locations).  This is a requirement for determine 
exploitability 
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State Transition for Memory Corruption 

c: corrupting instruction 
t: takeover instruction 
f: faulting instruction 

§  Case 1 
(green): 
Format String 

§  Case 2 and 3 
(red and 
blue): buffer 
overflow 

§  Case 4 
(purple): 
unpredictable 

Source: 
Automatic Diagnosis and 
Response to Memory 
Corruption Vulnerabilities 
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So, what? 

§  Legitimate assumption: 
–  To change the execution of a program illegitimately we need to 

have a value being derived from the attacker’s input (which we 
call:  controlled by the attacker) 

§  String sizes and format strings should usually be 
supplied by the code itself, not from external, un-trusted 
inputs. 

§  Any data originated from or arithmetically derived from 
un-trusted source must be inspected. 
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Taint Analysis 

§  Tainted data: Data from un-trusted source 

§  Keep track of tainted data (from un-trusted source) 

§  Monitors program execution to track how tainted attribute 
propagates 

 
§  Detect when tainted data is used in sensitive way  
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Taint Propagation 

§  When a tainted location is used in such a way that a 
value of other data is derived from the tainted data (like 
in mathematical operations, move instructions and 
others) we mark the other location as tainted as well 

§  The transitive relation is: 
–  If information A  is used to derive information B: 

»  A->t(B) -> Direct flow 
–  If B is used to derive information C: 

»  B->t(C) -> Direct flow 
»  Thus:  A->t(C) -> Indirect flow 

§  Due to the transitive nature, you can analyze individual 
transitions or the whole block (A->t(C)) 
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Location 

§  A location is defined as: 
–  Memory address and size 
–  Register name (we use the register entirely, not partially -> thus 

%al and %eax are the same) 
»  When setting a register, I set it higher (setting %al as tainted will 

also taint %eax) 
»  When clearing a register, I clear it lower 

§  To keep track over bit operations in a register it is 
important to taint the code-block level of a control flow 
graph 
–  This create extra complexity due to the existence of the flow 

graph and data flow dependencies graph 
–  The dependencies graph represents the influence of a source 

data in the operation been performed 
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Taint Sources 

§  Any information in the control of the attacker is tainted 
(remember the transitive relation of the tainted data) 

§  The more tainted information, the bigger the propagation 
and the required resources in order to keep track of that 

§  Tainted data is only deleted when it receives an 
assignment from an untainted source or an assignment 
from a tainted source resulting in a constant value not 
controlled by the attacker 
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Flows 

§  Explicit flow: 
–  mov %eax, A 

§  Implicit flow: 
–  If (x == 1) y=0; 

§  Conditional statements require a special analysis 
approach: 
–  In our case, we are analyzing the trace of a program (not the 

program itself, but only what was executed during the section 
that generated the crash) 

–  We have two different analysis step:  tracing and analysis 
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Special Situations 

§  Partial Tainting:  When the untrusted source does not 
completely control the tainted data 

§  Tainting Merge:  When there are two different untrusted 
sources being used to derive some data 

§  Data  
–  In Use:  when it is referenced by an operation 
–  Defined:  when the data is modified 
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Inheritance problems 

Rare  
e.g., malloc/free, system calls 

Frequent  
e.g., memory access, 
data movement 

Events 

Problem: state explosion for binary operations ! 
 

mov %eax ß A 
mov B ß %eax 

taint(%eax) = taint(A) 
taint(B)    = taint(%eax) 

Application Propagation 
Tracking 

%eax inherits from A 
B inherits from %eax 

Inheritance 
Tracking 

add %ebx ß D taint(%ebx) |= taint(D) insert D into %ebx’s 
inherit-from list 
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Tracking Instructions 

§  Pure assignments:  Easy to track 
–  If a tainted location is used to define another location, this new 

location will be tainted 

§  Operations over strings are tainted when: 
–  They are used to calculate string sizes using a tained location 

»  a = strlen(tainted(string)); 
»  Since the ‘string’ is tainted, I assume the attacker controls ‘a’ 

–  Search for some specific char using a tainted location, defining a 
flag if found or not found 

»  pointer = strchr(tainted(string), some_char); 
»  If (pointer) flag=1; 
»  ‘flag’ is tainted if the attacker controls ‘string’ or ‘some_char’ 
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Tracking Instructions 

§  Arithmetic instructions with at least one tainted data 
usually define tainted results 

§  Those arithmetic instructions can be simplified to map to 
boolean operations and then the following rules applies 

X Y X or Y 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

OR truth table 

X Y X or Y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

AND truth table 
X Y X or Y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

XOR truth table 
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Arithmetics with Tainted Data 

§  OR Operand 
–  If the untainted data is 1, the result is untainted 
–  If the untainted data is 0, the result is tainted 

§  AND Operand 
–  If the untainted data is 0, the result is untainted 
–  If the untainted data is 1, the result is tainted 

§  XOR Operand 
–  If it is an xor against itself, the result is untainted 
–  Otherwise, the result is tainted 
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Eflags and Flow Information 

§  The eflags register can also be tainted to monitor flags 
conditions influencing in operations (and flow) 

§  In the presented approach, conditional branches are 
taken care due to the trace generated by the WinDBG 
plugin (single-stepping) 
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Backward Taint Analysis 

§  Divide the analysis process in two parts: 
–  A trace from a good state to the crash (incrementally dumped to 

a file) -> Gather substantial information about the target 
application when it receives the input data, which is formally 
named 'analysis'  

–  Analysis of the trace file -> Formally defined as 'verification' step, 
where the conclusive analysis is done  
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The need for intermediate languages... 

§  Assembly instructions have explicit operands, which are 
easy to deal with, and sometimes implicit operands: 
–  Instruction:  push eax 

–  Explicit operand: eax 

–  What it really does? 
»  ESP = ESP – 4 (a substraction) 
»  SS:[ESP] = EAX (a move) 
»  Here we have ESP and SS as implicit operands 

•  Tks to Edgar Barbosa for this great example! 
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The tracing step 

§  Instead of using an intermediate language, I play straight 
with the debugger interfaces (WinDBG) 

§  The tracer stores some useful information, like effective 
addresses and data values and also simplifies the 
instructions for easy parsing: 

–  CMPXCHG r/m32, r32 -> 'Compare EAX with r/m32. If equal, ZF 
is set and r32 is loaded into r/m32. Else, clear ZF and load r/m32 
into AL'  

»  Such an instruction creates the need for conditional taints, since by 
controlling %eax and r32 the attacker controls r/m32 too.  
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Tracing File 

§  Contains: 
–  Mnemonic of the instruction 
–  Operands 
–  Dependences for the source operand 

»  Eg:  Elements of an indirectly addressed memory 
»  This creates a tree of the dataflow, with a root in the crash 

instruction 

§  The verification step reads this file and: 
–  Search this tree using a BFS algorithm 
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Theorical Example 

§  1-) mov edi, 0x1234   ; dst=edi, src=0x1234  
§  2-) mov eax, [0xABCD]   ; dst=eax, src=ptr 0xABCD ; 

Note 0xABCD is evil addr  
§  3-) lea ebx, [eax+ecx*8]  ; dst=ebx, src=eax, 

srcdep1=ecx  
§  4-) mov [edi], ebx   ; dst=ptr 0x1234, src=ebx  
§  5-) mov esi, [edi]    ; dst=esi, src=ptr 0x1234, 

srcdep1=edi  
§  6-) mov edx, [esi]   ; Crash!!!  
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Theorical Example – The Tree 

§  6-) Where does [esi] come from?  
§  5-) [edi] is moved to esi, where edi comes from and what 

does exist in [edi]?  
§  4-) [edi] receives ebx and edi is defined in 1-) from a 

fixed value  
§  3-) ebx comes from a lea instruction that uses eax and 

ecx  
§  2-) eax receives a value controlled by the attacker  
§  ... ecx is out of the scope here :)  
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Limitation of the approach 

§  Since I only use the trace information, if the crash input 
data does not force a flow, I can’t see the influence of 
the input over this specific flow data 

§  To solve that: 
–  If a jmp is dependent of a flag, the attacker controls branch 

decision 
–  Control over a branch means tainted EIP  
–  To define the value of EIP, consider: 

»  The address if the jump is taken 
»  The address of the next instruction (if the jump is not taken) 
»  The value of the interesting flag register  (0 or 1) 
»  Then:  %eip  <- (address of the next instruction) + value of the 

register flag * ( |address if jump is taken – address of the next 
instruction| ) 
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Existent Solutions and Comparisions 

§  !exploitable 
–  Tries to classify unique issues (crashes appearing through different code paths, machines 

involved in testing, and in multiple test cases) 
–  Quickly prioritizes issues (since crashes appear in thousands,  while analysis capabilities 

are VERY limited) 
–  Group the crashes for analysis 

§  Spider Pig 
–  Created by Piotr Bania 
–  Not available for testing, but from the paper:  It is much more advanced them the 

provided tool (but well, it is not available?) 
»  Virtual Code Integration (or Dynamic Binary Rewriting) -> Discussed in my previous 

year presentation about Fuzzers here in Troopers 
»  Disputable Objects:  Partially controlled data is analyzed using the parent data 

§  Taint Bochs 
–  Used for tracking sensitive data lifecycle in memory 
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§  Taint Check 
–  Uses DynamicRIO or Valgrind 
–  Taint Seed:  Defining the tainted values (data comming from the 

network for example) 
–  Taint Tracker:  Tracks the propagation 
–  Taint Assert:  Alert about security violations 
–  Used while testing software to detect overflow conditions, does nto 

really help in the exploit creation 
»  In the article I also provided a heap analysis tool for Embedded 

Linux Architecture (ARM) since the Memcheck plugin for Valgrind is 
not available on this architecture 

 
§  Bitblaze 

–  An amazing platform for binary analysis 
–  Provides better classification of exploitability (Charlie Miller talk in BH) 
–  Can be used as base platform for the provided solution (VINE) 

Existent Solutions and Comparisions 
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How it works (or is supposed to) 
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Start tracing 
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Find something from your input to search 
for in memory 
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Locate the input in the program’s memory 
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Open the tracing file 
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Add the taint range 
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Analyze 
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Analyze 
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Analyze 
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Future 

§  I can’t foresee the future! 

§  Hope more researchers will contribute in the future 

§  The code needs immediate support for extended coverage of 
x86 instructions, speed enhancements, introduction of 
heuristical detection over user input (so you don’t need to 
specify memory ranges to watch) 
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