Dynamic Program Analysis and Software Exploitation
From the crash to the exploit code

Rodrigo Rubira Branco (BSDaemon)

Founder Dissect || PE — Now the Qualys Vulnerability & Malware Research Lab
rodrigo *noSPAM* kernelhacking.com

http://twitter.com/bsdaemon

Agericz

= QObjectives
= History
= [ntroduction

= Concepts of Taint Analysis
— Taint Sources
— Intermediate Languages and Tainted Sources
— Explosion of Watched Data

= Backward Taint Analysis
— From the crash to the exploit code

= Existent solutions and comparisions

= Future

Oujzcilves
= Explain my latest Phrack Article

= Demonstrate how vulnerability finding works (or is
supposed to work)

= Give some concepts about program analysis for
vulnerability exploitation

= Explain the challenges the exploit writer faces nowadays

= Be fun?

curlty riowzczays (Vezo, again tne sume slides)

Buggy programs deployed on critical servers

Rapidly-evolving threats, attackers and tools (exploitation
frameworks)

Lack of developers training, resources and people to fix
problems and create safe code

That’s why we are here today, right?

Sorry, rezlly sorry

= Usually | start from the end and here | was supposed to
show an Oday vulnerability in Excel

= Everything is ready to be presented using the tool that I'll
explain in the presentation

= The problem: Microsoft did not issue the patch yet ->
Well, they delayed it (it was supposed to be released in

March, now only in April)
— I'm not blaming Microsoft, they’ve been very supportive

~7

curlty nowzacays — Oczay crzillerngs

First host All vulnerable hosts
attacked attacked
| |
I |
N __J
~—

Reaction time
Slammer: 10 mins

Future worms: < 1 minute [Staniford et. al. 2002]

“Oday Statistics
Average Oday lifetime:
348 days

Shortest life:

99 days

Longest life:

1080 (3 years)”

- Justine Aitel

rllztory

= Original Motivation: Complex client-side vulnerability in a
closed (at the time) file format

= Extended Motivation: Trying to better analyse hundred

thousands of bugs in word (search for Ben Nagy,
Coseinc)

= |nitial version integrated with a fuzzer, only for Linux
(showed past year here in Troopers)

= Ported version for Solaris to analyze a vulnerability
released by Secunia in the same software RISE Security
released a vulnerability some time before

= Thanks to Julio Auto parallel research in the same field,
we created together the WIinDBG version presented here

Irrirodiction — Wzt ls orograrn anzlysis for LUs?

= Make a computational system reason automatically (or at
least with little human assistance) about the behaviour of
a program and draw conclusions that are somehow

useful

= Help us to determine exploitability of vulnerabilities, or to
rapidly develop an exploit code

= The most widely known solution for the exploitability
determination is given by Microsoft: !exploitable

-l

lesololtzinls

File Edit View VM Team Windows Help

mEule oalR Do DEE &3
y Home X g) 10 l&} Windows XP Research Iﬁj findow

Sl A= BB W G E EERECOEE

Command - Pid 3924 - WinDbg:6.11.0001.404 XB6

ModLoad: 10200000 10323000 C:N\WINDOWS\WinS=S\x86_Microsoft . VC90.DebugCRT_1fc8b3b%1el8e3b _9.0. A
ModLoad: 77dd0000 77e6b000 C:N\WINDOWSNsystem32NADVAPI32 DLL

ModLoad: 7770000 77£02000 C:\WINDOWS\systemn32\RPCRT4 .dll

ModLoad: 77fe0000 77££1000 C:A\WINDOWS\sy=ten32\Secur3i2.dll

(f54.d60): Access violation - code 0000005 (!!! second chance !!1)

eax=41414141 ebx=7{{del00 ecx=003429d0 ed=x=00000001 e=si=00390038 =di=00390032

eip=41414141 esp=0012f£f68 ebp=0012ffb8 iopl=0 nv up ei pl nz na po nc

cs=001b ===0023 ds=0023 es=0023 {=s=003b g=s=0000 efl=00000202

41414141 27 77

0:000> .load winext msec.dll

0:000> lexploitable

*%% ERROR: Symbol file could not be found. Defaulted to export symbols for C:\WINDOWS\system32\
Exploitability Classification: EXPLOITAELE

Recommended Bug Title: Exploitable - Read Access Violation at the Instruction Pointer starting a

Access violations at the instruction pointer are exploitable if not near NULL.

<

Ln1, Col1 Sys0:<Local> Proc 000:fS4 Thrd 000:d60

To direct input to this VM, click inside or press Ctrl+G.

e

=kCE LN

lesololtzinls

= This is incorrectly classified as EXPLOITABLE because
the tool always assume that the attacker has control over
all the input operands

= |n this presentation, we are going to try to answer the
question: Are the input operands in the attacker’s
control?

10

Conceyts of Talrrt Anzlysis

o
n

= Taint Analysis is one kind of program flow analysis and
we use it to define the influence of external data
(attacker’s controlled data) over the analyzed application

= Since the information flows, or is copied to, or influence
other data there is a need to follow this influence in order
to determine the control over specific areas (registers,

memory locations). This is a requirement for determine
exploitability

11

Stzite Transitior for Memory Corrlgtior

= Case 1 | |
) Non-takeover instr / with
(9 reen)- . incorrect ddr predict.ion (1=f) Takeover instr 7
Format Strin with correct addr
9 .
.. Ty diction :
e =~ Initial ~Critical Data™~P"® Security
. Case 2 and 3 Normal/, corruptmgh\ Corruptlon 4 Compromise
(red and instr ¢ (c=/)
blue): buffer _ &
m R0,
overflow 2ls a$> N S
Oe & PN
Ol @ \- W Qo e Ly
= Case 4 sE é@“’@\ o, 'oxcs,
(purple): = RO oy, 7N
pU p . — Qg@‘ >y
unpredictable
' Faulting instruction f {/]‘ﬁgansisi{é'ﬁ[\\
Source: @ ._Execution
Automatic Diagnosis and c: corrupting instruction
Response to Memory t: takeover instruction
Corruption Vulnerabilities f: faulting instruction

12

S0, WY

= | egitimate assumption:

— To change the execution of a program illegitimately we need to
have a value being derived from the attacker’s input (which we
call: controlled by the attacker)

= String sizes and format strings should usually be
supplied by the code itself, not from external, un-trusted
iInputs.

= Any data originated from or arithmetically derived from
un-trusted source must be inspected.

13

Tzt Anzlysis

= Tainted data: Data from un-trusted source
= Keep track of tainted data (from un-trusted source)

= Monitors program execution to track how tainted attribute
propagates

= Detect when tainted data is used in sensitive way

14

Tzt Propzigztlorn

When a tainted location is used in such a way that a
value of other data is derived from the tainted data (like
In mathematical operations, move instructions and
others) we mark the other location as tainted as well

The transitive relation is:
— |If information A is used to derive information B:
» A->t(B) -> Direct flow

— If B is used to derive information C:
» B->t(C) -> Direct flow
» Thus: A->t(C) -> Indirect flow

Due to the transitive nature, you can analyze individual
transitions or the whole block (A->t(C))

15

Loczitlorn

= A location is defined as:
— Memory address and size

— Register name (we use the register entirely, not partially -> thus
%al and %eax are the same)

» When setting a register, | set it higher (setting %al as tainted will
also taint %eax)

» When clearing a register, | clear it lower

= To keep track over bit operations in a register it is
important to taint the code-block level of a control flow
graph
— This create extra complexity due to the existence of the flow
graph and data flow dependencies graph

— The dependencies graph represents the influence of a source
data in the operation been performed

16

= Any information in the control of the attacker is tainted
(remember the transitive relation of the tainted data)

= The more tainted information, the bigger the propagation
and the required resources in order to keep track of that

= Tainted data is only deleted when it receives an
assignment from an untainted source or an assignment
from a tainted source resulting in a constant value not
controlled by the attacker

17

WS

11
QO

= Explicit flow:
— mov %eax, A

= [mplicit flow:
— If (x ==1) y=0;

= Conditional statements require a special analysis

approach:
— In our case, we are analyzing the trace of a program (not the

program itself, but only what was executed during the section

that generated the crash)
— We have two different analysis step: tracing and analysis

18

2

ozclal Sitlztlons

Partial Tainting: When the untrusted source does not
completely control the tainted data

Tainting Merge: When there are two different untrusted
sources being used to derive some data

Data

— In Use: when it is referenced by an operation
— Defined: when the data is modified

19

Inneritancs oroolerns

Problem: state explosion for binary operations !

mov %eax <€ A
mov B €& %eax

add %ebx ¢ D

Propagation
Tracking

|

|

|

: _e.g., malloc/free, system calls
|)
|

|

|

|

|

Frequent
¢.g., memory access,
data movement

%eax inherits from A
B inherits from %eax

insert D into %ebx’s
inherit-from list

20

Tracying lnsiructions

= Pure assignments: Easy to track

— |If a tainted location is used to define another location, this new
location will be tainted

= Operations over strings are tainted when:

— They are used to calculate string sizes using a tained location
» a = strlen(tainted(string));
» Since the ‘string’ is tainted, | assume the attacker controls ‘a’
— Search for some specific char using a tainted location, defining a
flag if found or not found
» pointer = strchr(tainted(string), some_char);
» If (pointer) flag=1;
» ‘flag’ is tainted if the attacker controls ‘string’ or ‘'some_char’

21

Tracying lnsiructions

= Arithmetic instructions with at least one tainted data
usually define tainted results

= Those arithmetic instructions can be simplified to map to
boolean operations and then the following rules applies

Oﬁﬁ& tthrutﬁl1b{gblca

- O - O
O =~ -~ O

22

Arltnmetics Wit Talritec Dzapre

= OR Operand

— |If the untainted data is 1, the result is untainted
— |If the untainted data is O, the result is tainted

= AND Operand

— |If the untainted data is O, the result is untainted
— |If the untainted data is 1, the result is tainted

= XOR Operand

— If it is an xor against itself, the result is untainted
— Otherwise, the result is tainted

23

=flags and Flow lnformertiorn

= The eflags register can also be tainted to monitor flags
conditions influencing in operations (and flow)

= In the presented approach, conditional branches are
taken care due to the trace generated by the WinDBG

plugin (single-stepping)

24

SacuzErd Talnt Anzlysls

= Divide the analysis process in two parts:
— A trace from a good state to the crash (incrementally dumped to
a file) -> Gather substantial information about the target
application when it receives the input data, which is formally
named 'analysis’
— Analysis of the trace file -> Formally defined as 'verification' step,
where the conclusive analysis is done

25

Trie rizzd Torirtermedizite larcuzcas.,
gLzl

= Assembly instructions have explicit operands, which are
easy to deal with, and sometimes implicit operands:

— Instruction: push eax
— Explicit operand: eax

— What it really does?
» ESP = ESP — 4 (a substraction)
» SS:[ESP] = EAX (a move)
» Here we have ESP and SS as implicit operands

» Tks to Edgar Barbosa for this great example!

26

Trigtracinig stz

» |nstead of using an intermediate language, | play straight
with the debugger interfaces (WinDBG)

* The tracer stores some useful information, like effective
addresses and data values and also simplifies the

instructions for easy parsing:

— CMPXCHG r/m32, r32 -> 'Compare EAX with r/m32. If equal, ZF
is set and r32 is loaded into r/m32. Else, clear ZF and load r/m32
into AL’

» Such an instruction creates the need for conditional taints, since by
controlling %eax and r32 the attacker controls r/m32 too.

27

Traclng Flle

= Contains:
— Mnemonic of the instruction
— Operands

— Dependences for the source operand
» EQ: Elements of an indirectly addressed memory

» This creates a tree of the dataflow, with a root in the crash
instruction

= The verification step reads this file and:
— Search this tree using a BFS algorithm

28

Trizoriczl Ezumnole

= 1-) mov edi, 0x1234 ; dst=edi, src=0x1234

= 2-) mov eax, [OXABCD] ; dst=eax, src=ptr OXABCD ;
Note OXABCD is evil addr

= 3-) lea ebx, [eaxt+ecx*8] ; dst=ebx, src=eakx,
srcdep1=ecx

= 4-) mov [edi], ebx ; dst=ptr 0x1234, src=ebx
= 5-) mov esi, [edi] ; dst=esi, src=ptr 0x1234,
srcdep1=edi

= 6-) mov edx, [esi] ; Crash!!!

29

Trnzoriczl Bznole — Trie Tres

= 6-) Where does [esi] come from?

= 5-) [edi] is moved to esi, where edi comes from and what
does exist in [edi]?

= 4-) [edi] receives ebx and edi is defined in 1-) from a
fixed value

= 3-) ebx comes from a lea instruction that uses eax and
ecx

= 2-) eax receives a value controlled by the attacker
= .. ecxis out of the scope here :)

30

Llrnltzitlon ofthe 2100rozcr)

= Since | only use the trace information, if the crash input
data does not force a flow, | can’t see the influence of
the input over this specific flow data

= To solve that:

— If a jmp is dependent of a flag, the attacker controls branch
decision

— Control over a branch means tainted EIP

— To define the value of EIP, consider:
» The address if the jump is taken
» The address of the next instruction (if the jump is not taken)
» The value of the interesting flag register (0 or 1)

» Then: %eip <- (address of the next instruction) + value of the

reqgister flag * (|address if jump is taken — address of the next
instruction|)

31

l—l

=odstent Solutlons wdnd Cormozirisions
lexploitable
— Tries to classify unique issues (crashes appearing through different code paths, machines
involved in testing, and in multiple test cases)
— Quickly prioritizes issues (since crashes appear in thousands, while analysis capabilities
are VERY limited)
— Group the crashes for analysis
Spider Pig
— Created by Piotr Bania
— Not available for testing, but from the paper: It is much more advanced them the
provided tool (but well, it is not available?)
» Virtual Code Integration (or Dynamic Binary Rewriting) -> Discussed in my previous
year presentation about Fuzzers here in Troopers
» Disputable Objects: Partially controlled data is analyzed using the parent data
Taint Bochs

— Used for tracking sensitive data lifecycle in memory

32

= Taint Check
— Uses DynamicRIO or Valgrind

— Taint Seed: Defining the tainted values (data comming from the
network for example)

— Taint Tracker: Tracks the propagation
— Taint Assert. Alert about security violations

— Used while testing software to detect overflow conditions, does nto
really help in the exploit creation

» In the article | also provided a heap analysis tool for Embedded
Linux Architecture (ARM) since the Memcheck plugin for Valgrind is
not available on this architecture

= Bitblaze

— An amazing platform for binary analysis
— Provides better classification of exploitability (Charlie Miller talk in BH)
— Can be used as base platform for the provided solution (VINE)

33

rlow It worrs (orls sUoposesd to)

ModLoad: 75da0000 75e5d4000 C:\WINDOWS\system32\SXS.DLL

(ac.594): Break instruction exception - code 80000003 (first chance)
eax=7ffdd000 ebx=00000001 ecx=00000002 edx=00000003 e=s1=00000004 edi=00000005
eip=7c8laldel esp=00%9bffcc ebp=009bfffd4 iopl=0 nv up €1 pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 £{s=0038 gs=0000 ef1=00000246
#%% ERROR: Symbol file could not be found. Defaulted to export symbols for C:°
ntdll ! DbgBreakPoint:

7c8la3el cc int 3

0:003> bp kernel32!CreateFilell

E*;g%RROR: Symbol file could not be found. Defaulted to export symbols for C:°
: > g

|*BUSY* [Debuggee is running. ..

Kernel Hacking: If you really know, you can hack! — http://www.kernelhacking.com/rodrigo 34

U)
L
(—-
I(_S
Ij
(—-
(—-
I—{
(S
| J—
Q
D
(i

0:003> .load vdt-tracer

0:003» lvdt_help

Visual Data Tracer vl.0 Alpha - Copyright (C) 2008-2010

License: This software was created as companion to a Phrack Article.
Developed by Rodrigo Rubira Branco (BSDaemon) <rodrigo@risesecurity.org’ and

Julio Auto <julio@julicauto.com?

lydt_trace <filename> - trace the program until a breakpoint or
in a file to be later consumed by the Vis
lvdt_help - this help screen

0:003y lvdt_trace excel phrack.vdt

35

-

Flrd sormetning frorm yolr InouUt to sezrer

forlir mermo ory

le Edit Search Address Bookmarks Tools XViscript Help
EE X & BEBRERAECE § N
0 |09 04 06 00 78 CC 02 3D 40 33 03 00 03 02 04 006003 FF| 4 - xIq=@s !l 14 LyE
13 |3E 00 09 40 SF C2 02 CO 88 40 00 OB C4 02 73 00 41 40 oC |> e_A4A-e (2i4|s alelo—
26 |01 C3 0836 00 3E/02 12 00 B4 B9 40 45 0000 co 72 cz o1 | AQ & >471 |- ez Alr|d
35 |01 01 20 80 3D 82 03 CO 00 1D 00 OF 00 03 41 SB 98 00 00 €=, LA ¥ Larg-
4C |01 00 1940 02 06 EF CO 01 FA 00 80 1F 00 C4 89 Cé OC 3F beq-3i2 a € iz 02
SF |02 7F 10 7F 10 87 7F 10 7F 10 75 10 FE 20 7D 05 01 ¢c1 75 |7 + +- 4 4 ut+p 1| ZAu
72 |03 2B 08 A0 4C 00 E0 85 SF F2 FS 00 4F 68 1028 3108 00 |L+@ = &a.¥eua on+«*Q
85 |2B DO 27 B3 D9 30 40 04 CO 60 00 21 64 D5 E1 03 486001 |[+B "> 0oed & 1ada&lu-
98 |04 60 0050 60 00 61 02 6A 60 E0 00 12 60 00 7C 60 00 EL |4 *| B/* a3/~ & 1| 1 * &
2B |SB 94 AB 20 00 81 56 A0 E0 00 0D 60 00 AC 60 00 52 13 &0 |[” « & v| & stz e
BE |00 B2 60 00 21 OE E4 80 07 1E 05 60 01 07 60 0053 42 6c | , | 1 Az€e | ¢ sB1
D1 |61 63 18 6B 00 00 E1 01 61 08 6D 61 72 00 63 65 6C 6F 2E |ac | k 4 aflmar celo.
m677561007A656C606900650562031060054D glua aze i e|lbl4 | M
F7 |69 63 72 6F 80 73 6F 66 74 20 45 78 80 04 02 00 A2 50Cé |icro€socft Ex€dq <¢PE
102 |27 B2 71 83 C3 02 01 61 01 80 FB 39 14 61 12 01 630100 |"' = gqfi4q =2 €a9fa~ ¢
11D |OF 66 64 86 A8 C3 FE 01 E1 8B 40 07 SF 00 3F 04 3F 04 3F |¥£d+ "Ap &<e@e | 24242
130 |04 3F 04 FF 3F 04 3F 04 3F 04 3F 04 3F 04 3F 04 3F 04 3F |4 2d g 2d 2d 2d 242424 21>
143 |04 FF 3F 04 3F 04 3F 04 3F 04 3F 04 3F 04 3F 04 3F 04 FF |[d 3§24 24 2d 2d 21 20221 3
156 |3F 04 3F 04 3F 04 1F 02 1F 01 1F 01 1F 01 1F 01 FF 1F 01 |24 24 24| 4 i Ll
Adr. dec: 232 (Char dec: 122 |Overwrite | 4

i .s e
————

Locarte trig Ingllt Irltne orograrm’s merory

0:000> = —[wl]a 0O=x0 L?30000000 "zzell1"
O=x001393ce
O0x001717e0
Ox30862168

37

Operine tracirig flle

M Visual Data Tracer E]@
File | Analysis I Help

1
B76. l Add Taint Range Ctrl+R rl

&]

A
B77. P 1 b e b = P Chl D
678. 3d93175f 681018933d push offset WININET!Ordinal351+0x1810 (3d931810p

679. 3d931764 eB0bffffff call WININET!Ordinal351+0x1674 (3d931674)

630. 3d931674 68f0683d3d push offset WININE T!InternetConfirmZoneCrossings+0xbef2 [3d3d680) B
631, 3d931679 64ff3500000000 push dword ptr fs:[0] fs:0038:00000000=03eaffacd

682. 3d931680 8b442410 mov eax,dword ptr [esp+10h] s5:0023:03eaff24=0000002c0

683. 3d931684 896c2410 mov dword ptr [esp+10h).ebp s5:0023:03eaff24=0000002c0

634, 3d931688 8dE6c2410 lea ebp[esp+10h]

685. 3d93168¢ 2bel sub esp.ead

636, 3d93168e 53 push ebd

687 3d93168f 56 push esi

638 3d931690 57 push edi

683 3d931691 a12c139e3d mov eax.dword ptr [W/ININE T!IntermetConfirmZoneCrossing®+0x1672e (3d9e132¢)] ds:0023:3d3e132c=59bdche
690. 3d931696 3145fc wor dword ptr [ebp-4).eax s5:0023:03eaff20=3d9318100

691. 3d931699 33cH ®or eax,ebpl

692, 3d93169b 50 push ead

693. 3d93169¢ 89658 mov dword ptr [ebp-18h].esp s5:0023:03eaff0c={LDAP3210rdinal325 (76f60000)1

694, 3d93169f ff75(8 push dword ptr [ebp-8] ss:0023:03eaff1c=3d9317690

695. 3d9316a2 Sbdbfc mov eax,dword ptr [ebp-4] s5:0023:03eaff20=6427ddf40

696. 3d9316a5 c745fcfeffffff mov dword ptr [ebp-4],0FFFFFFFEh $5:0023:03eaff20=6427ddf40

697. 3d9316ac 89458 mov dword ptr [ebp-8).eax s5:0023:03eaff1c=3d3317690

693 3d9316af 8d45f0 lea eax.[ebp-10h]

699. 3d9316b2 645300000000 mov dword ptr fs:[00000000h),eax fs:0038:00000000=03eaffacl

700. 3d9316b8 c3 ret

701. 3d931769 8bdd0c mov eck,dword ptr [ebp+0Ch] s5:0023:03eaff30=000000030

702, 3d93176c 33d2 wor edsedd

703. 3d93176e 42 inc edd

704. 3d93176f 8955e4 mov dword ptr [ebp-1Ch],edx s5:0023:03eaff08=76f611e7

705, 3d931772 33f6 wor esiesl

706. 3d931774 8975(c mov dword ptr [ebp-4].esi $5:0023:03eaff20=ffffffed

707. 3d931777 890d882e%3d mov dword ptr [WININE TlInteretConfirmZoneCrossing&+0x1828a (3d9e2e88)].ecx ds:0023: 3d9e2e88=((fiffif

708. 3d9317c3 c745fc03000000 mov dword ptr [ebp-4].offset <Unloaded_ure.dll> +0x2 [00000003] ss:0023:03eaff20=000000000

708. 3d9317ca (7510 push dword ptr [ebp+10h] ss:0023:03eaff34=000000000

710. 3d9317cd 51 push ecd

711, 3d9317ce (7508 push dword ptr [ebp+8] s5:0023:03eaffZe={WININET!0rdinal351 (3d330000)}10

72 3d9317d1 eBfcfeffff call WININETIOrdinal351+0x16d2 (3d9316d2)

713 3d9316d2 8bff moy ediedd

714, 3d9316d4 55 push ebpl

715, 3d9316d5 Sbec mov ebp,espl M

Done!

[isual Data Tracer

File Help
676, 3d931757 5d pop ebpl A~
B77. 3d93175d BaZc push 2CHl _
678 3d93175f681018933d push offset WININET!Ordinal351+0x1810 (3d331810)
679. 3d931764 e80bffifff call WININET!Ordinal351+0x1674 (3d331674)1 L
680 3d931674 68f0689d3d push offset WININE T!IntermetConfirmZoneCrossing&+0xbcf2 (3d9d68f0p
681, 3d931679 64f3500000000 push dword ptr fs:[0] fs:0038:00000000=03eaffacl
682 3d931680 8bd42410 mov eax,dword ptr [esp+10h] $5:0023:03eaff24=0000002c0
633 3d931684 896c2410 moy g . sl e000000 :
684, 3d931688 8dEc2410 CER- Add Taint Range
685. 3d93168¢ 2bel sub esy
636, 3d93168e 53 push eby
687 3d93168f 56 push esi
688 3d931690 57 push edll Start End
689, 3d931691 a12c13%e3d mov 672e (3d9e132c]] ds:0023:3d9e132c=53b4che
£90. 34931696 314560 wor cwf |040013%Bce | [0x001717e0 | | Add | [.
691. 3d931699 33cH ®Ol eay
692. 3d93169b 50 push ea# Start End | Remove l
633. 3d93169¢ 89658 mov g 0x001393ce 00017170 325 (76600001
694, 3d93169f fF75f8 push dw
695, 3d9316a2 8b45fc moy e
696. 3d9316a5 c745fcfeffffff movy d
697. 3d9316ac 894518 moy d
698 3d9316af 8d45f0 lea eay
699. 3d9316b2 645300000000 mov
700. 3d9316b8 3 ret]
701. 3d931769 8bddlc moy g
702. 3d93176¢c 33d2 wor ed
703. 3d93176e 42 inc edd
704, 3d93176f 8955e4 mov d [Close |
705, 3d93N772 3316 ®or esi,
706. 3d931774 8975fc mov dword plr [ebp-4].esi ss: -J3ealt U=
707. 3d931777 890d382e9%e3d mov dword ptr PWININE T!IntemetConfirmZoneCrossing®+0x1828a (3d9e2e88)],ecx ds:0023:3d9e2e88=fffifif
708. 3d9317c3 c745fc03000000 mov dword ptr [ebp-4].offset <Unloaded_ure.dll> +0x2 (00000003) ss:0023:03eaff20=000000000
709. 3d9N 7ca (7510 push dword ptr [ebp+10h] $5:0023:03eaff34=000000000
710. 3d9317cd 51 push ecd
711, 3d9317ce 7508 push dword ptr [ebp+8] $5:0023:03eaff2e={WININET!0rdinal351 (3d930000)
72 3d9317d1 edictefffft call WININET!Ordinal351+0x16d2 (3d9316d2)
713 3d9316d2 8bff mov edied
714, 3d9316d4 55 push ebpl
715, 3d9316d5 8bec moy ebp,espl b
Done!

Kernel Hacking: If you really know, you can hack! — http://www.kernelhacking.com/rodrigo

39

ArnzlyZe

M Visual Data Tracer

&)X

File Analysis Help
676E. 3d931757 6d pop ebpl A
677 3d93175d BaZc push 2CH -
678. 3d93175f681018333d push offset WININET!Ordinal351+0+1810 [3d931810p
679. 3d931764 eB0bffffff call WININETIOrdinal351+0x1674 (3d931674)
680. 3d931674 68f0689d3d push offset WININE T!InternetConfirmZoneCrossing&+0xbcf2 (3d9d68f0p B
631 3d931679 64ff3500000000 push dword ptr fs:[0] fs:0038:00000000=03eaffacd
682, 3d931680 8b442410 mov eax,dword ptr [esp+10h] s5:0023:03eaff24=0000002c0
683. 3d931684 896c2410 mov dword ptr [esp+10h).ebp s5:0023:03eaff24=0000002c]
684 3d931688 8d6c2410 lea ebp,esp+10h]
635, 3d93168¢ 2bel sub esp.ead
636, 3d93168e 53 push ebd
637 3d93168f 56 push esi
638 3d931690 57 push edi
683 3d931691 a12c139%e3d mov eax.dword ptr [WININE T!IntermetConfirmZoneCrossings+0x1672e (3d9e132c)] ds:0023:3d3e132c=59bdche
690. 3d931696 3145fc wor dword ptr [ebp-4).eax $5:0023:03eaff20=3d9318100
691. 3d931699 33cH ®or eax,ebpl
692. 3d93169b 50 push ead
£93. 3d93169¢ 89658 mov dword ptr [ebp-18h].esp $5:0023:03eaff0c={wLDAP32!0rdinal325 (7660000}
694, 3d93169f f75(8 push dword ptr [ebp-8] ss5:0023:03eaff1c=3d9317690
695. 3d9316a2 8bdbfc mov eax,dword ptr [ebp-4] s5:0023:03eaff20=6427ddf40
696, 3d9316a5 c745fcfeffffff mov dword ptr [ebp-4],0FFFFFFFEh $5:0023:03eaff20=6427 ddf40

== OO0 4 - 24001 720

3d9316ac 83458 moy dword Re=e=tae

698. 3d9316af 8d45f0 lea eax,[ebpl Check Taint OF > |

699, 3d9316b2 645300000000 mov dw affacl

700, 3d9316b8 c3 refl Scroll To Item

701. 3d931769 8b4d0c mov eck,dword ptr [ebp+0Ch] ss:0023:03eaft30=000000020

702, 3d93176c 33d2 wor edsedd

703. 3d93176e 42 inc edd

704. 3d93176f 8955e4 mov dword ptr [ebp-1Ch],edx $5:0023:03eaff08=76f611e7

705, 3d93772 33f6 wor esiesi

706. 3d931774 8975(c mov dword ptr [ebp-4).esi $5:0023:03eaff20=ffffffel

707. 3d931777 890d882e%3d mov dword ptr [WININE TlInteretConfirmZoneCrossing®+0x1828a (3d9e2e88)].ecx ds:0023: 3d9e2e88=((fffif
708. 3d9317c3 c745fc03000000 mov dword ptr [ebp-4].offset <Unloaded_ure.dll> +0x2 (00000003) s5:0023:03eaff20=000000000

709, 3d9317ca (7510 push dword ptr [ebp+10h] $5:0023:03eaff34=000000000

710 3d9317cd 51 push ecd

711, 3d9317ce (7508 push dword ptr [ebp+8] s5:0023:03eaff2e={WININET!Ordinal351 (3d930000)}0

72 3d9317d1 eBfcfeffff call WININET!Ordinal351+0x16d2 (3d9316d2)

713 3d9316d2 8bff mov ediedd

714, 3d9316d4 55 push ebpl

715, 3d9316d5 Sbec mov ebp,espl e
Done!

40

ArnzlyZe

M Visual Data Tracer

BElE

File Analysis Help
676. 3d931757 5d pop ebpl A
B77. 3d93175d BaZc push 2CH W
678, 3d93175f681018933d push offset WININETIO0rdinal351+0x1810 (3d931810p
679. 3d931764 eB0bffffff call WININETIOrdinal351+0x1674 (3d931674)
680. 3d931674 68f0689d3d push offset WININE T!InternetConfirmZoneCrossing&+0xbcf2 (3d3dE6Sf0p B
631. 3d931679 64ff3500000000 push dword ptr fs:[0] fs:0038:00000000=03eaffach

) 3d931680 8b442410 moy eax,dword ptr [esp+10h] $5:0023:03eaff24=0000002c]

683. 3d931684 896c2410 mov dword ptr [esp+10h), - =
624, 3d931688 8d6c2410 lea ebp.[esp+10hD Check Taint O ’ D3eaff24
635, 3d93168¢ 2bel sub esp.ead es
E86. 3d93168¢ 53 push ebid scrol To Item P
687 3d93168f 56 push esi
638 3d931690 57 push edi
689. 3d931691 a12c139%e3d mov eax,dword ptr [(WININE T!IntemetConfirmZoneCrossingd+0x1672e [3d9e132¢]] ds:0023:3d9e132c=55b4che
£90. 3d931696 3145fc wor dword ptr [ebp-4].eax $5:0023:03eaff20=3d3318100
691. 3d931699 33cH ®or eax,ebpl
692, 3d93169b 50 push ead
693. 3d93169¢ 89658 mov dword ptr [ebp-18h].esp $5:0023:03eaff0c={wWLDAP32!0rdinal325 [76f60000)}
694 3d93169f f75(8 push dword ptr [ebp-8] s5:0023:03eaff1c=3d9317690
695, 3d9316a2 8bd5fc mov eax,dword ptr [ebp-4] s5:0023:03eaff20=6427ddf40
B96. 3d9316a5 c745fcfeffffff mov dword ptr [ebp-4],0FFFFFFFEh $5:0023:03eaff20=6427ddf40
697. 3d9316ac 89458 mov dword ptr [ebp-8).eax s5:0023:03eaff1c=3d9317690
693 3d9316af 8d45f0 lea eax[ebp-10h]
699. 3d9316b2 642300000000 mov dword ptr fs:[00000000h],eax fs:0038:00000000=03eaffacd
700. 3d9316b8 c3 ret
701, 3d931769 8b4d0c mov eck,dword ptr [ebp+0Ch] s5:0023:03eaff30=000000020
702. 3d93176c 33d2 wor edsedd
703. 3d93176e 42 inc edd
704. 3d93176f 8955e4 mov dword ptr [ebp-1Ch],edx $5:0023:03eaff08=76f611e7
705. 3d931772 33f6 wor esiesl
706. 3d931774 8975fc mov dword ptr [ebp-4].esi s5:0023:03eaff20=(ffffffed
707. 3d931777 890d882e9%e3d mov dword ptr [(WININE T!intemetConfirmZoneCrossing®+0x1828a (3d9e2e88)) ecx ds:0023: 3d9e2e88=f(fiffff
708. 3d9317¢3 c745fc03000000 mov dword ptr [ebp-4).offset <Unloaded_ure.dll> +0x2 (00000003) ss:0023:03eaff20=000000000
709. 3d9317ca (7510 push dword ptr [ebp+10h] $5:0023:03eaff34=000000000
710. 3d9317cd 51 push ecd
711, 3d9317ce (7508 push dword ptr [ebp+8] $5:0023:03eaff2c={WININE T!0rdinal351 (3d930000)}0
72 3d9317d1 eBfcfeffff call WININET!Ordinal351+0x16d2 (3d9316d2)
713 3d9316d2 8bff mov ediedi
714 3d9316d4 55 push ebpl
715. 3d9316d5 Sbec mov ebp,espl v
Done!

41

Arnzllyze

M Visual Data Tracer
File Analysis Help

300385b8 8bf7 mov esiedi

300385ba cleela shr esi,0aH

300385bd 83e607 and esi, Al

30038643 Ofbf45f8 movsy eax,word $5:0023:00123e30=00000

ANNIRRAT 294RF4 sith dwiard ntr lehn Tk eav << NN230M 222-=NNNNMT 20

1.
2.
3
4.
3

Analysis Results

Source operand: “00123e3)

Done!

Kernel Hacking: If you really know, you can hack! — http://www.kernelhacking.com/rodrigo

42

Flrtlre

= | can’t foresee the future!
= Hope more researchers will contribute in the future

= The code needs immediate support for extended coverage of
x86 instructions, speed enhancements, introduction of
heuristical detection over user input (so you don’t need to

specify memory ranges to watch)

43

Soszclal Traanegs

= To the Troopers Staff, for trusting me once again... This
conference is awesome

= Prime Security Team, specially Filipe Balestra

= RISE Security Group, yeah, we still exist, but now
everybody works

= Special thanks to Julio Auto who developed everything
with me (and besides me, lots of patience | know...)

44

End! Really !?

Rodrigo Rubira Branco (BSDaemon)

Founder Dissect || PE — Now the Qualys Vulnerability & Malware Research Lab
rodrigo *noSPAM* kernelhacking.com

http://twitter.com/bsdaemon

