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ASMONIA

 Funded by German government
 Industry, Research, Telco, Government

 Attack Analysis and Security Concepts for MObile 
Network Infrastructures supported by collaborative 
Information Exchange
 Network infrastructure

 HeNB, eNB, SAE-GW, …
 User equipment

 Phones, dongles, Smartphones (this talk)

 What’s my task in ASMONIA?
 Security mechanisms on Smartphones
 (New) infection vectors
 Malware detection on UE and NE



Disclaimer

This talk is not “the solution” but rather to raise 
awareness and inspire ideas
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Outline

 Introduction 

 Motivation

 The Problems

 Alternative mechanisms 

 Deployment ideas 

 Open problems
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Smartphones

 Multi-purpose

 Mobile internet

 GPS, WLAN, …

 3rd party apps

 More computer than phone

 “Unmanaged mess” (Enno)



6

Tales from the “Smartphone Hell”
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More Hellish Tales
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The General Problems

 Malware, Trojans, (viruses)

 Issues with current detection from classical IT
 Signature-based

 Aftercare

 External experts

 Computation and storage overhead

 May not be suited for Smartphones

 Still significantly slower

 Frequent scanning is energy intensive
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Smartphone Induced Challenges

 Many different OSs

 Many different software distribution paths

 Many different communication interfaces

 2/3/4G, Wi-Fi, BT, (NFC)

 Many different hardware vendors

 ACER, Samsung, HTC, LG, Motorola, …

 Different OS image

 Different update cycle

 Even OS distributors may stop updating older devices

 Android: Inflationary usage of permissions
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Attacks

 Privacy leakage

 Battery depletion

 Send SMS messages

 Infect files

 Spread to PC

 Block functionality

 Change user settings

 Demand money and delete 
incoming and outgoing SMS

 Disable / fake AV products

 Monitor user

 Damage user data

 Cause damage to xG 
network (Botnets)
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Alternative Detection Methods

 Monitor behavior

 Of user

 Of app

 Of Phone

 …

 Compare monitored traces to model

 Resembles benign behavior

 May point out unknown/suspicious incidents

 Iterative learning

 Profit from data mining research

 Allows partial matching wrt. known good behavior
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Roadmap

 Energy-greedy malware (2008)

 Symbian OS monitoring (2008)

 SMS-Watchdog (2009)

 User & App correlation (2010)

 General machine learning (2010)
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Energy Greedy Malware [KSK08]

 Initial motivation: 
Improve effectiveness to detect new outbreaks

 Focus on energy depletion threats

 Power monitor
 Collects power samples and builds history

 Based on available CE .Net API

 Data analyzer
 Power signature generation & matching

 Local or remote processing

 Experiments on HP iPAQ (WM5)
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Energy Greedy Malware [KSK08]
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Energy Greedy Malware [KSK08]

 Is energy really scarce?

 How many mini-/micro USB cables do you have on you right 
now?

 Free USB power outlets in airports

 Kind of outdated

 Assumes one running app

 It’s not really the business model of (Botnet) malware to 
make a host go offline 
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Monitoring Smartphones … [SPAL08]

 Symbian-based monitoring

 Move processing to remote system (newspeak: cloud)

 Less processing power on phone

 Less storage on phone

 Secure always-on connection

 Fingerprinting the app

 RAM FREE

 USER INACTIVITY

 PROCESS COUNT

 CPU USAGE

 SMS SENT COUNT
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Monitoring Smartphones … [SPAL08]

SMS Sending vs. SMS-Malware
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Monitoring Smartphones … [SPAL08]

 Demonstration of “app fingerprinting”

 Apps affect features in distinct ways

 Verification by “Button-2-pressed-Send-SMS”-malware

 Remote processing may cause additional risks

 How well does it work across different phones?
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SMS-Watchdog [YEG09]

 Focus on SMS-based attacks and spreading
 SPAM (unwanted, costly, increased netload)

 Spoofing (of senders, potentially useful for phishing)

 Flooding (increased netload)

 Faking (mimicking SMSC behavior)

 Collect SMS traces of users

 System is deployed on SMSC (NE)

 Detect deviation from known behavior profile
1. Monitor user for some time

2. Anomaly detection at intervals

3. Inform user about possible malware
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SMS-Watchdog [YEG09]



21

SMS-Watchdog [YEG09]

 High variation unsuited for detection model

 Improvement by computing similarities between monitor 
windows

 Min # SMS required to make model work

 Unclear how to obtain the “normal”-trace

 Model needs extensive training per user

 Are there legal implications?
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pBMDS [XSZZ10]

 Behavioral differences between:

malware and users

 Correlating user input and syscalls

 Process state transitions

 User operational patterns

 Scope:

 Real phone evaluation

 MMS & BT spreading

 Application level attacks
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pBMDS [XSZZ10]

 User action => series of syscalls unique to action

 Deviation from regular behavior

 Predictability of actions
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pBMDS [XSZZ10]

 Input events can be simulated by (smart) malware

 SMS sequenced behavior is biased

 Turing test deals with false positives

 Intrusive mechanism (kernel hooks)
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Anomaly Detection … [ABS10]

 General model

 Based on device usage patterns

 “Observable features” mapped to vector

 Experimenting with similarity measures

 ECD (6-dim & 40-dim)

 Mahalanobis distance (6-dim)

 Self-organizing maps (6-dim)

 Kullback-Leibler divergence (6-dim)
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Anomaly Detection … [ABS10]

1000 sample normal usage pattern



27

Anomaly Detection … [ABS10]

 Remote processing

 Training data is highly biased

 Public MIT volunteer data set

 Calls, SMS, and data communication logs

 Verification by “Button-2-pressed-Send-SMS”-malware

 Challenge of non-stationary usage behavior

 E.g., new apps
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Methods Summary

 Basically feature extraction is done on

 User behavior

 System behavior

 Application behavior

 Communication monitoring

 SMS, Bluetooth, WLAN, etc.

 Application of classification and clustering methods

 Support vector machines: Good/Bad behavior classes

 Probabilistic learning

 General fine tuning of matching methods



Hmmm…

so now what needs to be done to put these 
mechanisms to work?
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Deployment Ideas

 Think telco
 Large user base

 Monitoring is possible

 Use branding as a basis?

 Think app store
 Large user base

 Initial good behavior could be supplied along with app
 How to trust this?

 Feedback loop from user behavior

 Think OS
 Why not push security updates as in Linux distributions
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Open Issues

 Signature-based detection rarely has false alarms
 Is the user feedback loop useless?

 The “ok, leave me alone”-hazard

 Sanity check of detector by asking user
 “Do you think this is suspicious?”

 Which inputs are “good”?
 Fight the bias

 Where to monitor?
 Local vs. in network

 Where to process?
 Local vs. remote

 Risks of monitoring?
 Trust, Privacy?
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Open Issues (2)

 Statistical methods lack semantic capabilities and 
contextual information
 Challenge to distinguish rare behavior from malware

 Can we use in-place security mechanisms as 
sensors?
 Permissions
 Integrity checks
 Trusted boot
 …

 How to keep up with the progress
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To-do

 Experimentation and practical validation is needed

 Research across platforms

 Consider new input for monitoring

 overwriting and accessing specific files

 Voice, Data, downloading from suspicious sources

 …

 App profiling

 Keep up with the progress on Smartphones ;)



Thanks for the attention

André Egners

egners@umic.rwth-aachen.de
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Me

 Obviously IT-Security interested

 CS Diploma from Aachen with (anonymity) networking 
background

 Now PhD studies @ ITSec Research Group

 Field of research: Security in wireless networks

 Key Management

 Security Bootstrapping

 IDS / Monitoring

 4G networks and phones (ASMONIA)
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