

Integration of the New German ID-Card (nPA) in Enterprise Environments

Technics – Prospects – Costs - Threats Troopers 2011

Agenda

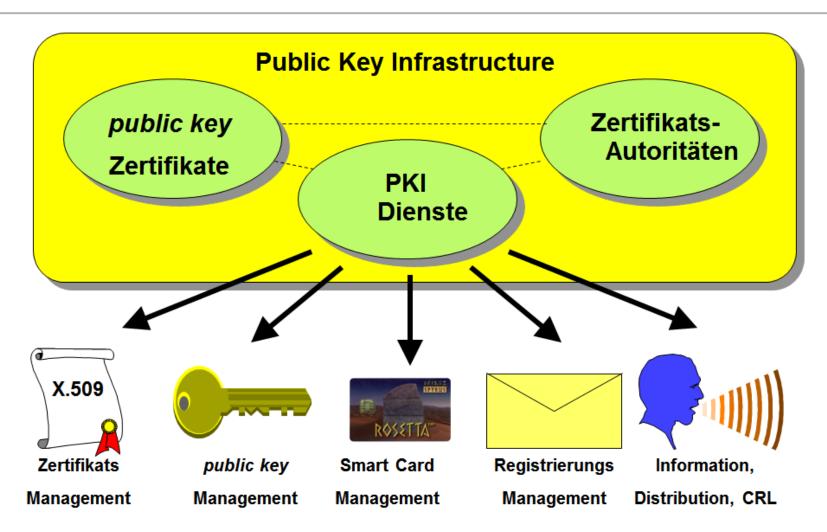
Introduction

- The New German ID-Card (nPA) Technicl Overview
 - Functions
 - Architecture
 - Supporting Background Infrastructure

Enterprise Integration of the nPA

- Szenarios
- Qrganizational Requirements
- Technical Requirements
- Risks
- Recommendations

- Strong authentication continues beeing one of the most important security issues & goals and gains even more importance if services move to the cloud.
 - It will be one of the few things ou can and should control;-)
- Strong authentication is achieved best with a certificate on a smartcard.
- In enterprise environments, this is done by implementing and running a PKI.



10 Requirements for Running a PKI

- Availability of the Components of a PKI
- Identification and Authentification Processes & Services
- Integrity of all Components and Processes
- Scalability and Flexibility
- Key-management
- Certificate-Suspension, -Revocation and -Validation Management
- Management of Responsibility
- Traceability
- Documentation
- Compliance

5

Now imagine...

- Complex PKI infrastructure is completly run (for you ;-) by the government...
- Processes and components are certified and will stay certified and you even don't have the hassle with that...

Is this possible...?

7

The New German ID Card Technical Overview

Terminology, Range of Functions, Architecture

Terminology

- ICAO International Civil Aviation Organization
 - ICAO 9303 (part 1 Specs for Machine Readable Travel Documents)
- nPA /ePA New German ID Card
 - "Neuer /elektronischer Personalausweis"

Terminology

Terminal Card Reader

Local card reader, card terminal of a service, inspection system

Inspection System

 Technical system used by an official authority and operated by a governmental organisation

QES Qualified Electronic Signature

 Electronic signature in accordance to the Act on Digital Signature [SigG] and the Signature Ordinance [SigV]

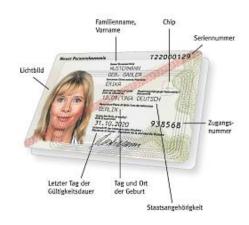
General Information

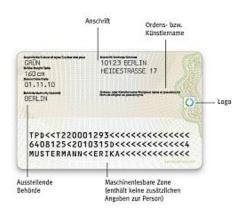
nPA

- ID-1
- Card Body: Polycarbonate
- RFID-Chip (compliant with ISO 14443)
 - Working range: 3,5 cm max
- CC certification (EAL4+)
- Compliant to TR-03110
 - Advanced Security Mechanisms for Machine Readable Travel Documents

Common Criteria Protection Profile

Electronic Identity Card (ID Card PP)


BSI-CC-PP-0061


Approved by the Federal Ministry of Interior

Version 1.03, 15th December 2009

Data on the nPA

Secrets of the nPA

CAN

The Card Access Number (CAN) is a short password that is printed or displayed on the document.

PIN

The Personal Identification Number (PIN) is a short secret (6 numbers) password that SHALL be only known to the legitimate holder of the document.

PUK

The PIN Unblock Key (PUK) is a long secret password that SHALL be only known to the legitimate holder of the document.

MRZ-Password

The MRZ-Password is a secret key that is derived from the machine readable zone and may be used for both PACE.

nPA – Range of Functions

Physical Functions

- Visual /sight check for official identification
- Tactile attributes

Electronic Functions

- nPA-Smartcard provides three applications for official and commercial /private use:
- ePass(port)
- eID
- eSign

nPA – Functions **ePass**

ePass application (required)

- contains user data (incl. biometric) as well as data needed for authentication (incl. MRZ), intended to be used by authorities as a MRTD
- Exclusive for Authenticated Inspection Terminals
 - TR-03127, 3.2.1
- Inspection System (TR-03127)
 - Has reading access on MRZ data and the facial image
 - With corresponding rights access to biometric data

nPA – Functions **eID**

elD application (optional)

- For commercial (eBusiness) and official (eGovernment) use
 - Official use example: address changes at a local authority, car registration
 - Commercial use example: (certified) online shops
- Provides (online) identity information
- On (online) authentication the rights are defined, to which of the stored user data access is granted (via authorization certificate)

nPA – Functions **eSign**

eSign application (optional)

- Provides qualified electronic signature (QES) via qualified electronic (X.509) certificate
- For commercial (eBusiness) and official (eGovernment) use
 - Official use: Announcement for trade- and business register (since 2010 only with electronic qualified signature)
 - Commercial use: Signing of PDFs (f. ex. electronic bill), long-time archiving of electronically signed documents (f. ex. with ArchiSig)

nPA Terminal Types

(E)IS (Electronic) Inspection System

- Official domestic /official foreign
 - Contains (cv-) certificate to prove identity

Authentication Terminal

- Official domestic or commercial
 - Contains (cv-) certificate to prove identity

nPA Terminal Types

- Confirmed Signature Terminal (nPA Card Reader)
 - For generating a QES
 - Contains (cv-) certificate to prove identity
 - Reader exampel: Reiner SCT RFID Komfort

nPA Terminal Types

Unauthenticated Terminal

- No Terminal or Chip authentication is required for certain administrative operations performed locally by the card holder
- Reader exampel: Reiner SCT RFID Standard

nPA Card Reader Types

Reader of category "basis" = Kat-B

Reader of category "standard": Kat-S

Reader of category "komfort": Kat-K

nPA Card Apps. vs. Terminal Types

See CC certification of nPA [PP-0061]

	Inspection System (official terminal)	Authentication Terminal (official or commercial terminal)	Signature Terminal
ePassport	Operations: reading all data groups (incl. biometrical) User interaction: CAN or MRZ for PACE In this context, the current terminal is equivalent to EIS in	-	-

nPA Card Apps. vs. Terminal Types

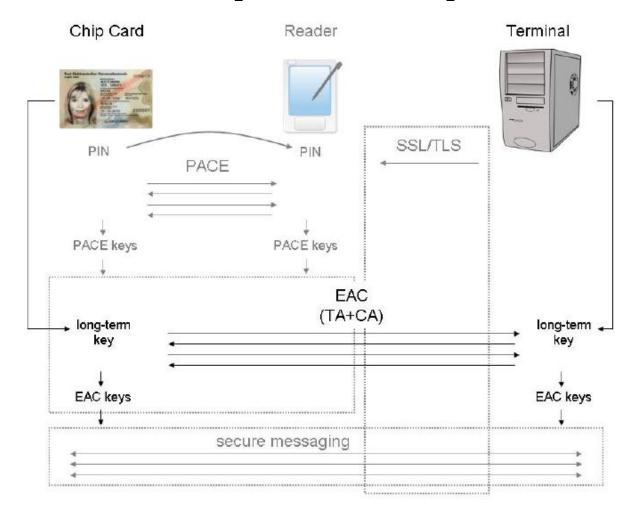
	Inspection System (official terminal)	Authentication Terminal (official or commercial terminal)	Signature Terminal
	[6]		
eID	Operations: reading all data groups User interaction: CAN for PACE	Operations: writing a subset of data groups; reading all or a subset of data groups User interaction: eID-PIN or eID-PUK or CAN ²⁵ for PACE	-
eSign	-	Operations: activating eSign application User interaction: eID-PIN or eID-PUK or CAN ²⁵ for PACE In the eSign context, the current terminal is equivalent to CGA in [7]	Operations: generating digital signatures User interaction: CAN for PACE, then eSign-PIN for access to the signature function In the eSign context, the current terminal is equivalent — as a general term — to SCA and HID in [7]

- Password Authenticated Connection Establishment (PACE)
- Extended Access Control (EAC)

PACE [TR-03110]

- Password Authenticated Connection Establishment (TR-03110)
- PACE is a password authenticated Diffie-Hellman key agreement protocol that provides explicit authentication of the MRTD chip, confidentiality and integrity of the communication.
- PACE (otherwise like SPEKE) has the following attributes
 - not patented
 - formal (mathematical) security proof
- PACE uses
 - ECKA 256 for key agreement; AES 128 CBC-Mode for encryption; AES 128 CMAC for Integrity

Extended Access Control (EAC) [TR-03110] is a protocol suite for MRTDs. Relevant for the nPA are:


- Terminal Authentication
 - Is a challenge response protocol that provides explicit unilateral authentication of the terminal.
 - All messages between terminal and chip are transmitted compliant to Secure Messaging [ISO 7816 – 4] using session keys derived from PACE or Chip Authentication.

Chip Authentication

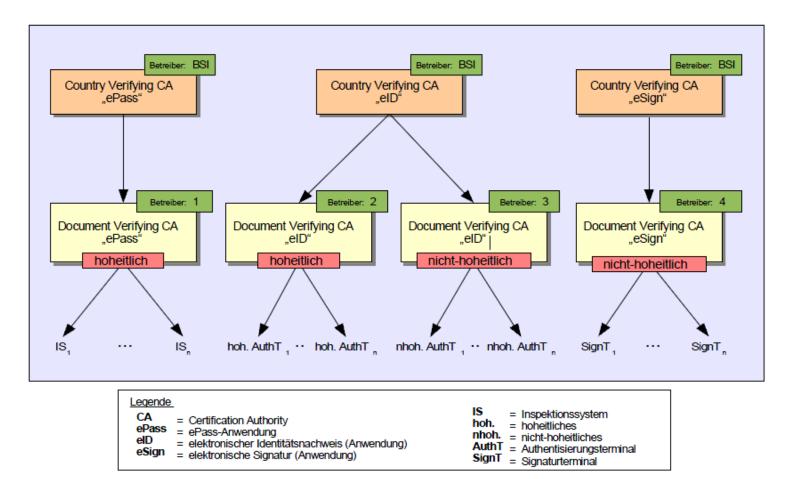
- Is an ephemeral static key-based Diffie-Hellman key agreement protocol that provides confidentiality and integrity in communication and unilateral authentication of the MRTD chip.
- Used algorithms: ECKA 256 for key agreement; AES 128 CBC-Mode for encryption; AES 128 CMAC for Integrity.

PACE + EAC overview [SecAna_EAC]

nPA Communication Protocols – PACE [TR03110], p.33

MRTD Chip (PICC)		Terminal (PCD)
static domain parameters D_{PICC}		
choose random nonce $s \in_{R} Dom(E)$		
$z = \mathbf{E}(K_{\pi}, s)$	$rac{D_{ extit{ ilde{PICC}}}}{z} angle$	$s = \mathbf{D}(K_{\pi}, z)$
additional data required for Map()	$\langle - \rangle$	additional data required for $\mathbf{Map}(\)$
$\widetilde{D} = \mathbf{Map}(D_{PICC}, s)$		$\widetilde{D} = \mathbf{Map}(D_{PICC}, s)$
$(\overbrace{SK_{PICC}}, \overbrace{PK_{PICC}}, \widetilde{D})$		choose random ephemeral key pair $(\widetilde{SK_{PCD}}, \widetilde{PK_{PCD}}, \widetilde{D})$
check that $\widetilde{PK}_{PCD} \neq \widetilde{PK}_{PICC}$	$\langle \frac{\widetilde{PK_{PCD}}}{\widetilde{PK_{PICC}}} \rangle$	check that $\overline{PK_{PICC}} \neq \overline{PK_{PCD}}$
$K = \mathbf{KA} \left(\widetilde{SK_{PICC}}, \widetilde{PK_{PCD}}, \widetilde{D} \right)$		$K = \mathbf{KA} \left(\widetilde{SK}_{PCD}, \widetilde{PK}_{PICC}, \widetilde{D} \right)$
	$\langle \frac{T_{PCD}}{}$	$T_{\mathit{PCD}}\!=\!\mathbf{MAC}\left(K_{\mathit{MAC}},\widetilde{PK_{\mathit{PICC}}}\right)$
$T_{\mathit{PICC}}\!=\!\mathbf{MAC}(K_{\mathit{MAC}}, \widehat{PK_{\mathit{PCD}}})$	$\frac{T_{PICC}}{}$	

nPA Archictecture



- Komplex PKI with three independed root CAs that are operated by the german BSI.
- Each root ca has a subordinated issueing ca, which is called the "Document Verifying" CA (DVCA).
- DVCAs for ePass- and eID-fuctionality issue cv certificates. DVCA for eSing-Application issues X.509 certificates.

nPA – Supporting Background Infrastructure

EAC PKIs [TR-03128], p.19

Enterprise Integration of the NPA

Enterprise Integration of the nPA

- Szenarios
- Qrganizational Requirements
- Technical Requirements
- Risks
- Recommendations

Enterprise Integration of the nPA

Assumption /Pre-Condition

You want to do smartcard logon

Enterprise-Focus

- Active Directory
- ⇒Smartcard (= nPA) logon to Active Directory
- Out of scope: SSO to other resources

Three Szenarios

Smartcard logon with nPA and QES

ACTIVE DIRECTORY

Smartcard logon with nPA and eID

Smartcard logon with nPA and additional certificate (on nPA)

Common Requierements

Organizational Requirements

- "Competence Team" for smartcard logon with nPA
 - May be part of the "Active Directory-Team"
- Interface to the data protection officer (DSB) required
- Interface to the german BSI (recommended) or eID-service provider (required if eID-service is used)

Common Requierements

Technical Requirements User PC

- Smartcard (nPA)
 - eID function activation required
- Card reader
 - Compatible with nPA

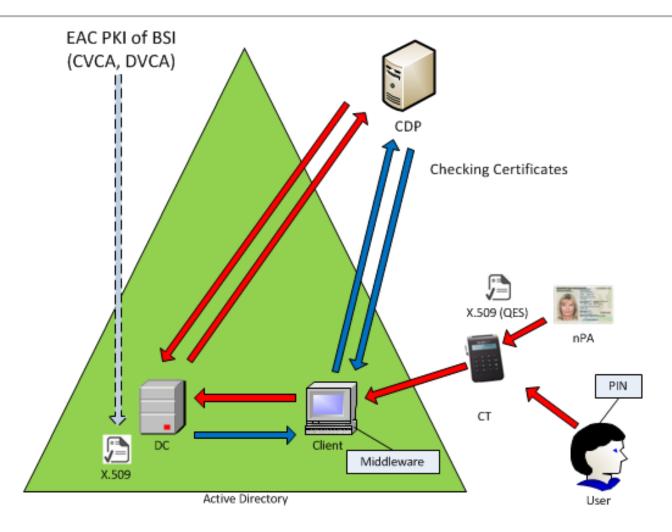
- Card reader driver
 - Available for Windows, Linux, Mac OS X, Terminal Servers (Windows, Citrix)
- Middleware (AusweisApp)
 - Available but not linked to the Microsoft GINA /Credential Provider

Common Requierements

- Technical Requirements Active Directory
 - Depend of the scenario
- Technical Requirements Infrastructur
 - CRL download required

Smartcard login with nPA and QES

Implementation steps


- Enable the nPA to talk with the computer
 - Ok
- Download the QES certificate
 - Ok

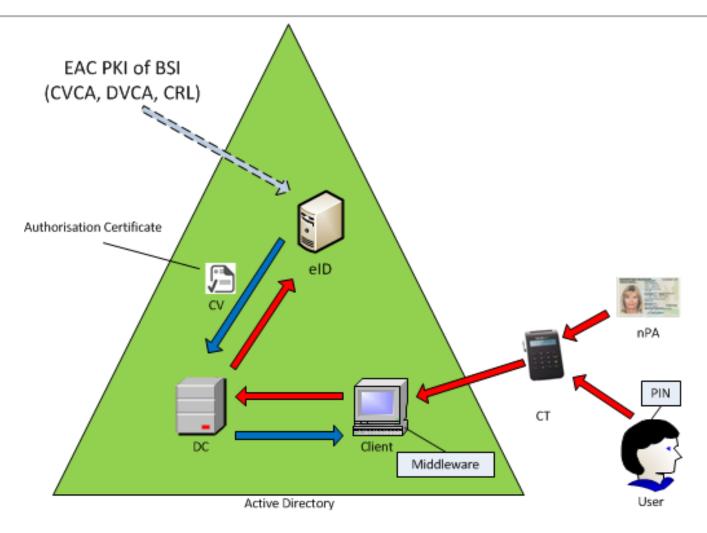
- Enable the computer to use QES certificate for domain login
 - ! Caveat 1: Middleware currently not integrated in computer login
 - ! Caveat 2: QES certificate currently not suitable (does not contain suitable ECDH key)
- Enable Active Directory to accept user certificates of a not integrated CA
 - Ok (one command per CA)

Smartcard login with nPA and QES

Smartcard login with nPA and eID

Implementation steps

- Enable the nPA to talk with the computer
 - Ok

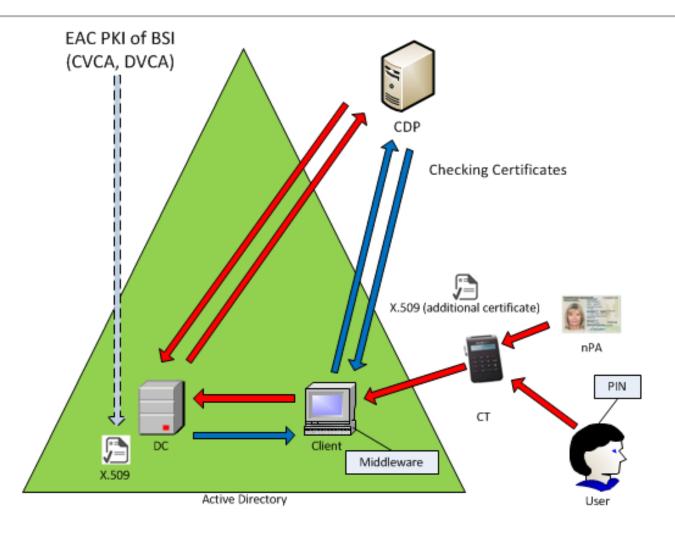


- Caveat: Implement eID service in Active Directory
 - Via service provider or via own eID server
 - ! Caveat: Adaption of Active Directory logon process required
 - ! Caveat: Middleware currently not integrated in computer login

Smartcard login with nPA and eID

Smartcard logon with nPA and additional certificate (on nPA)

Implementation steps


- Enable the nPA to talk with the computer
 - Ok

- Download additional certificate on nPA
 - !! Caveat 1: Use of additional certificate currently not supported by eSign application on nPA
 - ! Caveat 2: Currently only download of one QES certificate supported
- Enable the computer to use the additional certificate for domain login
 - ! Caveat 1: Middleware currently not integrated in computer login
- Enable Active Directory to accept user certificates of a not integrated CA
 - Ok (one command per CA)

Smartcard logon with nPA and additional certificate (on nPA)

Threats

Compromise of governmental PKI (means):

- Compromise of root ca or issueing ca
 - not very probable

- Compromise of nPA chip (EAL4+ certified)
 - not very probable
- Compromise of PACE
 - not very probable

Compromise of middleware (AusweisApp)

not relevant in the szenario smartcard logon with nPA and QES

Threats

- Compromise of eID server /service
 - not very probable, but will depend on implementation

- Compromise of user PC
 - not relevant in the szenario smartcard logon with nPA and QES

- User /data protection officer vetoes use of nPA for user logon
- Unexperienced user blocks QES- /eID functionality

Vulnerabilities

Middleware /AusweisApp not prepared for centralized management

- Updates?
- Configuration?

- Only available for germans
 - Electronic residence title (with same technical funcionality) will be available for people who live in germany

ERNW's security research on AusweisApp

- Because of a disclosed security vulnerability related to the update mechanism, we started some quick research for ourselves.
- First we checked the binaries with our TTI metric to check, if the AusweisApp was build with security in mind.
- Second step was to decompile the AusweisApp and look at the code itself.
- We were using parts of our code review approach
- So let's answer these questions ©

ERNW's security research on AusweisApp: TTI


```
TTICheck 32/64 Bit - (c) 2010 Michael Thumann
[i] Scanning .
.\ePALib Client.ols; Linker Version 8.0; ASLR NOT supported;
DEP NOT supported; No SEH found; TTI = 26.09
.\mozilla\AusweisApp FF3x Win\components\sigeCardClientFFExt.dll;
Linker Version 8.0; ASLR NOT supported; DEP NOT supported; No
SEH found; TTI = 26.09
.\npeCC30.dll; Linker Version 8.0; ASLR NOT supported; DEP NOT
supported; No SEH found; TTI = 26.09
.\pdcjk.dll; Linker Version 8.0; ASLR NOT supported; DEP NOT
supported; No SEH found; TTI = 26.09
.\PDFParser.dll; Linker Version 8.0; ASLR NOT supported; DEP
NOT supported; No SEH found; TTI = 26.09
.\PdfSecureAPI.dll; Linker Version 8.0; ASLR NOT supported;
DEP NOT supported; No SEH found; TTI = 26.09
.\PdfValidatorAPI.dll; Linker Version 8.0; ASLR NOT supported;
DEP NOT supported; No SEH found; TTI = 26.09
.\PdfViewerAPI.dll; Linker Version 8.0; ASLR NOT supported;
DEP NOT supported; No SEH found; TTI = 26.09
```

ERNW's security research on AusweisApp: Passwords, ouch!


```
package Idonttell;
public abstract interface Idonttell
public static final boolean debug = false;
public static final boolean auth = true;
public static final String SMTP SERVER =
"Idonttell.openlimit.com";
public static final String SMTP USER =
"Idonttell@Idonttell.openlimit.com";
public static final String SMTP PASSWORD = "Idonttell";
public static final String SEND FROM =
"Idonttell@Idonttell.openlimit.com";
public static final String[] SEND TO = { "buergerclient.it-
solutions@Idonttell.com" };
public static final String MAIL_HEADER_FIELD =
"OpenLimitErrorMessage";
public static final String MAIL HEADER FIELD PROP = "yes";
```

ERNW's security research on AusweisApp: Weak crypto???


```
private int[] getRandomNumber() {
 Vector random = new Vector();
  for (int index = 0; index < 10; ++index)
    random.add(Integer.valueOf(index));
 int[] randomNumbers = new int[10];
 Random r = new Random(System.currentTimeMillis());
  for (int i = 0; i < 10; ++i)
    int number = r.nextInt(random.size());
    randomNumbers[i] = ((Integer)random.remove(number)).intValue();
  return randomNumbers;
```

ERNW's security research on AusweisApp: No XML validation


```
protected void init(InputStream is, String[] astrSchema, String documentURI)
{
    this.m_DBF = DocumentBuilderFactory.newInstance();
    this.m_DBF.setNamespaceAware(true);
    boolean validate = false;
    try
    {
        if (null != astrSchema)
        {
            validate = true;
            this.m_DBF.setValidating(false);
            this.m_DBF.setAttribute("http://java.sun.com/xml/jaxp/properties/schemaLanguage", "http://www.withis.m_DBF.setAttribute("http://java.sun.com/xml/jaxp/properties/schemaSource", astrSchema);
    }
    this.m_DB = this.m_DBF.newDocumentBuilder();
    this.m_DB.setErrorHandler(MyErrorHandler.getInstance());
}
```

Combined cost-risk-control view

Scenario			
	Cost Factors	Main Risks	Controls
nPA + QES for AD logon	Integration of middleware in user logon; Domain controller certificates from official PKI; Certificate design requires additional ECDH key for ECDSA certificate.	Lost or stolen nPA; vetoed use of nPA for user logon; compromise of a governmental PKI component.	Defined processes for replacement of nPA; alternativ logon should be defined; users and data protection officer must be consulted before the decision to implement nPA for user logon.
nPA + eID for AD logon	Integration of middleware in user logon; integration of eID server or service in Active Directory; cost of eID server or service.	Lost or stolen nPA; vetoed use of nPA for user logon; compromised AusweisApp; compromise of a governmental PKI component.	Defined processes for replacement of nPA; alternativ logon should be defined; defined processes for compromised AusweisApp; alternativ middleware; users and data protection officer must be consulted before the decision to implement nPA for user logon.
nPA + additional certificate for AD logon	Yet not possible to define.	Scenario might not be possible.	To be defined.

4/4/2011 52

Recommendations

- Speak soon with users, worker's council and the data protection officer if you plan using nPA for user logon.
- Presently, Active Directory integration of the nPA is not possible; observe the evolution of nPA enterprise integration
 - especially the evolution of eID services
- Plan for replacement scenarios of nPA with alternative user credentials in case of, lost, blocked or compromised nPA.

Recommendations

- Use only certified card readers, at least a standard card reader (not basic!)
- Use only certified middle ware.
- If you do not plan to use the nPA + QES certificate for user logon, use at least a standard reader with display.

Summary

- nPA enterprise integration for Active Directory logon is currently not possible but might be possible within 6 – 12 months.
- nPA enterprise integration for Active Directory logon is seductive, because
 - Complete PKI is run by the german government.
 - PKI of german government promises to be highly reliable in terms of C, I, A.
 - CC EAL4+ confirmation of nPA
 - Cost for smartcard logon with nPA will be far beyond cost of an own PKI with smartcard logon (not nPA).

Summary

 User might not be willing to use nPA for enterprise user logon; so speak soon with users, worker's council and the data protection officer.

References

- [Sec_Ana_EAC] Dagdelen, Özgür u. Fischlin, Marc: Security Analysis of the Extended Access Control Protocol for Machine Readable Travel Dokuments.
- [TR-03111] BSI: Elliptic Curve Cryptography, v.1.11
- [TR-03116-2] BSI: eCard-Projekte der Bundesregierung.
 Stand 2010 Revision.
- [DK] Dennis Kügler: Extended Access Control: Infrastructure and Protocol, Berlin 2006.

Questions & Answers

Stay tuned with us ;-)

