
Forging Canon
Original Decision Data

TROOPERS II
28 March – 1 April 2011

Heidelberg, Germany

Dmitry Sklyarov

What is Original Decision Data

It is too easy to edit photos…

ODD is added to the image
file by camera and expected
to provide information to
detect any image alteration

Modified!

My first DSLR – Canon EOS 350D

•  Great piece of
hardware

•  Like it very much!
(honestly! :)

•  Does not support
Original Image
Verification features :(

My next DSLR – Canon EOS 30D

•  Even better than
350D :)

•  Custom Function 19:
Add Original Decision
Data to each picture
taken

EOS 30D: ODD in .JPG file
•  ODD is stored as

160 (0xA0) bytes
appended after JPEG
EOI (0xFFD9) marker

•  File offset of ODD is
stored as 32-bit value
in Tag 0x0083 inside
EXIF/MakerNote IFD
(Image File Directory)

.JPG file
JPEG SOI (0xFFF8) marker

EXIF data

JPEG EOI (0xFFF9) marker
ODD: 160 (0xA0) bytes

JPEG main image

EXIF MakerNote IFD
(Canon-specific)

Tag 0x0083:
ODD offset: 32 bits

EOS 30D: ODD dump

0000: FF FF FF FF 02 00 00 00 59 89 7D ED 86 BE 89 C8

0010: 68 98 52 0F 4C C2 E0 86 1A BF BA DC 04 00 00 00

0020: 00 00 00 00 C6 45 00 00 43 1B 0B 00 D6 15 F0 36

0030: 91 92 21 DC 9B 33 B8 20 C9 C7 F2 EC 04 7C 9E 5B

0040: 01 00 00 00 00 00 00 00 36 00 00 00 62 99 34 61

0050: A9 17 AA DB 14 BE 60 0C 20 73 F1 B8 21 DD 6B 90

0060: 02 00 00 00 3A 00 00 00 02 03 00 00 FC 45 9E 9A

0070: 8B 1E 7D 26 F0 7C 5D A3 B1 A9 42 17 75 0F 41 0B

0080: 03 00 00 00 40 03 00 00 86 42 00 00 9B E2 81 AE

0090: 59 D8 21 6D 0F 9B 15 D0 CA 85 28 D8 44 7F 8F 5D

ODD marker ODD version Number of Regions

Region IDs Region offsets Region lengths

ODDv2: Regions layout

•  R0: Main Image

•  R1: From 0 to Tag
0x0112 of EXIF Main
IFD (Orientation tag)

•  R2: From Orientation
tag to ODD Offset tag

•  R3: From ODD Offset
tag to Main Image

Region 1

EXIF Orientation tag (4 bytes)

Region 2

EXIF ODD Offset tag (4 bytes)

Region 3

Region 0
(Main Image)

ODD (160 bytes)

ODDv2: General structure
typedef struct {
 DWORD marker; // Marker == ~0
 DWORD ver; // ODD version == 2
 BYTE unknown_1[20];
 DWORD nRegions; // Number of Regions == 4
 struct {
 DWORD id; // Region ID
 DWORD o; // Region data offset
 DWORD cb; // Region data length
 BYTE unknown_2[20];
 } r[4]; // Regions
} T_ODD_v2; // sizeof(T_ODD_v2) == 0xA0

ODDv2: Guessing unknowns

Field before regions
definition

Represents signature for
the whole image file?

Field inside region
definition

Hold signature of the
particular region data?

Signature length is
always 20 bytes

Too short for asymmetric,
but matches SHA-1 length

Symmetric SHA-1
based authentication? May be HMAC-SHA-1?

1.  Explore CHDK (Canon Hacker's
Development Kit) Wiki and forum

2.  Dump firmware using “blinking”
or some other technique

3.  Use IDA Pro to analyze
dumped ARM code

Looking into camera’s firmware
Three easy steps :)

ODDv2: Clarified structure
typedef struct {
 DWORD marker; // Marker == ~0
 DWORD ver; // ODD version == 2
 BYTE imgHMAC[SHA_DIGEST_LENGTH];
 DWORD nRegions; // Number of Regions == 4
 struct {
 DWORD id; // Region ID
 DWORD o; // Region data offset
 DWORD cb; // Region data length
 BYTE HMAC[SHA_DIGEST_LENGTH];
 } r[4]; // Regions
} T_ODD_v2; // sizeof(T_ODD_v2) == 0xA0

ODDv2: Region HMAC

•  Hash region data
bytes with MD5

•  Repeat 128-bit region
hash value 4 times to
fill 64-byte buffer

•  Calculate HMAC for
the buffer, store result
in ODDv2.r[i].HMAC

MD5 Region[i]
data bytes Rgn[i] hash

HMAC-SHA-1

Rgn[i] HMAC

Rgn[i] hash
Rgn[i] hash
Rgn[i] hash
Rgn[i] hash

HMAC key

ODDv2: Image file HMAC

•  Merge four 128-bit
hash values for all 4
regions to fill 64-byte
buffer

•  Calculate HMAC for
the buffer, store result
in ODDv2.imgHMAC

HMAC-SHA-1

File HMAC

Rgn[0] hash
Rgn[1] hash
Rgn[2] hash
Rgn[3] hash

HMAC key

ODDv2: What is HMAC key
•  Length is 256 bits

(32 bytes)
•  Builds from two 128-

bit parts, each part is
stored separately in
obfuscated form

•  Last 32 bits are
replaced by camera’s
BodyID (stored in
EXIF) before HMAC
calculation

de-obfuscated
Left part
(128 bits)

de-obfuscated
Right part
(128 bits)

BodyID (32 bits)

ODDv2: Notes on HMAC key

•  Key value is the same for all cameras of
some particular model (e.g. EOS 30D)

•  Different camera models (5D, 20D, 30D)
uses different keys

•  Knowing key for particular model allows
forging ODD for any camera of that model!

•  Key can be extracted from the camera!

EOS 40D: New version of ODD

•  ODD is stored within EXIF
•  ODD version is 3
•  Image file length is stored inside ODD
•  File is treated as set of areas (based on

content type)
•  Area could contain several regions
•  Integrity of each area monitored

independently

ODDv3: Area layout in .JPG file

1.  Main image
2.  All other data
3.  Orientation
4.  User comment
5.  Check marks
6.  Thumbnail

Area 2 (other)

ODD (excluded from Area 2)

Area 1 (Main image)

Area 3 (Orientation)

Area 4 (User comment)

Area 6 (Thumbnail)

Area 5 (Check marks)

Note: ODD is not
included in any area

Exif data

ODDv3: General structure
ODDv3

Header

Information

Image
information

Area descriptors

Padded with zeros

Marker and Version

Image file signature

ODD Info signature

ODDv3: Header structure
typedef struct {
 DWORD marker; // Marker == ~0
 DWORD ver; // ODD version == 3
 DWORD cbImgSig; // len(Sign(Image))
 BYTE imgSig[cbImgSig]; // Sign(Image)
 DWORD cbInfoSig; // len(Sign(oddInfo))
 BYTE infoSig[cbInfoSig]; // Sign(oddInfo)
} T_ODDv3_Hdr;

•  Note: cbImgSig and cbInfoSig are

always == 20 == SHA_DIGEST_LENGTH

ODDv3: Area structure
typedef struct {
 DWORD id; // Area ID
 DWORD cbSalt; // Salt length
 BYTE abSalt[cbSalt];// Salt
 DWORD cbSig; // Len(Sign(Area))
 BYTE abSig[cbSig]; // Sign(Area)
 DWORD nRange; // Ranges count
 struct {
 DWORD o; // Range offset
 DWORD cb; // Range length
 } r[nRange]; // Array of ranges
} T_ODDv3_Area;

ODDv3: Info part structure
typedef struct {
 DWORD cbInfo; // Length of Info part
 DWORD cbSigSalt; // Image/oddInfo salt length
 BYTE sigSalt[cbSigSalt]; // Image/oddInfo salt
 DWORD v3; // Version again? == 3
 DWORD cbFile; // Total size of file
 DWORD vHash; // 1: VxWorks, 2 or 3: DryOS
 DWORD KeyID; // Encryption key ID
 DWORD BoardID; // Board ID
 DWORD KeySalt; // HMAC key salt
 DWORD nArea; // Number of areas follows
 T_ODDv3_Area[nArea]; // Area descriptions
 BYTE zeros[]; // Zero filling
} T_ODDv3_Info;

Ver 2 and 3, OS: DryOS

Note: Salt is not used
(but still stored in ODD)

ODDv3: Hash algorithm version

Ver 1, OS: VxWorks

SHA-256 Data
bytes Result

MD5 Data
bytes Hash

Result

PRNG Salt Random1
Random2

MD5 Hash+
Random1

MD5 Hash+
Random2

•  Salt values are obtained from weak PRNG

•  Seed value is based on total number of
shots taken by camera (Shutter Counter)

•  ODD information could be used to
discover actual Shutter Counter value!

ODDv3: Notes on Salt values

static DWORD seed;
DWORD randCanon (void) {
 seed = seed * 0x41C64E6D + 0x3039;
 return (seed >> 16) & 0x7FFF;
}

ODDv3: HMAC Key
DWORD KeyID; // Encryption key ID
DWORD BoardID; // Board ID
DWORD KeySalt; // HMAC key salt

Unknown
function

KeyID

BoardID

KBoardID
(256 bit)

KeySalt

BodyID
(from EXIF)

SHA-1 based
256-bit hash

HMAC key
(256 bit)

ODDv3: Notes on HMAC key

•  KBoardID value is depends on KeyID and
BoardID values

•  KeyID is in range 1..9 (inclusive)
•  Every camera uses unique KBoardID

•  Knowing KeyID, BoardID and KBoardID
triplet allows forging ODD for any camera!

•  Key can be extracted from the camera!

Verification devices: DVK-E1

•  Introduced with the
EOS-1Ds in 2002

•  Works in Windows
only

•  Supports EOS-1Ds
only

•  Discontinued

Verification devices: DVK-E2

•  Introduced in 2004
•  Works in Windows

only
•  Supports: 1Ds, 1Ds

Mark II, 1D Mark II,
1D Mark II N, 20D,
30D, 5D

•  Discontinued

Verification devices: OSK-E3

•  Introduced in 2007
•  Works in 32-bit

Windows only
•  Supports: all ODD-

enabled cameras
•  Also support images

encryption on 1D[s]
Mark III+

•  Costs about $700

Model name ODD version V2 key Announced
EOS-1D 2001-09-25
EOS-1Ds probably 1 1 2002-09-24
EOS 10D 2003-02-27
EOS 300D 2003-08-20
EOS-1D Mark II 2 2 2004-01-29
EOS 20D 2 3 2004-08-19
EOS-1Ds Mark II 2 4 2004-09-21
EOS 350D 2005-02-17
EOS 5D 2 5 2005-08-22
EOS-1D Mark II N 2 6 2005-08-22
EOS 30D 2 7 2006-02-21
EOS 400D 2006-08-24

Model name KeyID seen vHash Announced
EOS-1D Mark III 1 2007-02-22
EOS-1Ds Mark III 1 2007-08-20
EOS 40D 1 1 2007-08-20
EOS 450D 2 1 2008-01-24
EOS 1000D 2 1 2008-06-10
EOS 50D 1 2 2008-08-26
EOS 5D Mark II 1 2 2008-09-17
EOS 500D 3 2 2009-03-25
EOS 7D 4 2 2009-09-01
EOS-1D Mark IV 2 2009-10-20
EOS 550D 4 2 2010-02-08
EOS 60D 4 3 2010-08-26

Summary: What we can do?

•  Dump camera’s memory
•  Run our code on camera’s processor
•  Extract secret keys from the camera
•  Calculate and verify ODDv2 for models

with known key
•  Calculate ODDv3 for any camera using

known KeyID/BoardID/KBoardID triplet

Summary: What we can’t do [yet]?

•  Generate and verify ODDv2 images
for models with unknown key

•  Calculate KBoardID from KeyID/
BoardID and verify ODDv3 if
KBoardID is unknown for given
KeyID/BoardID

Summary: What Canon can do?

•  With currently available models – nothing
•  With future models:

–  Implement HMAC calculation in
cryptoprocessor which does not expose
secret key

– Prevent camera from running non-Canon’s
code to avoid illegal usage of cryptoprocessor

•  Hire people who really understands
security :)

Conclusion

•  We reported to CERT and Canon on
September 21, 2010

•  Still no response from Canon…

• Verdict about image originality
obtained via Canon’s OSK can’t
be relied upon

Forging Canon
Original Decision Data

Thank you! ;)

Dmitry Sklyarov

