
Cache on delivery

marco@sensepost.com

Marco Slaviero

Setup from previous research
Clobbering the cloud looked at providers & their services
However, software stack *used* by providers doesn’t get much sec
exposure

Dan Geer on Comodo
“The most telling part of the certificate
fraud story is that the issuers and the
browser manufacturers solve the problem by
hard coding the broken certs into the
browsers. They do not rely on CRLs. They
do not rely on OCSP.

Think about that for a moment...”

Cloud is still buzzwording
Whether it’s a buzz or not, or new or not, people are changing the
ways they do stuff
Security tradeoff is “watch that basket”, but people aren’t
Previously we’ve looked at cloud-front ends, now we’re looking at
backends

Cache on delivery

marco@sensepost.com

Marco Slaviero

Setup from previous research
Clobbering the cloud looked at providers & their services
However, software stack *used* by providers doesn’t get much sec
exposure

Hey we’re from ZA, can be anything
Mention TROOPERS10, invited back, it’s been great

Cloudy Cloud Cloud

• The times they are a changin’

• If you’re going to put all your eggs in one
basket....

• Last year “Clobbering the Cloud”

• This year “Look Behind the Curtain”

Cloud is still buzzwording
Whether it’s a buzz or not, or new or not, people are changing the
ways they do stuff
Security tradeoff is “watch that basket”, but people aren’t
Previously we’ve looked at cloud-front ends, now we’re looking at
backends

Changes

• Massive data sets & user populations

• Less complexity

• Barrier lowering

• Self Service

• Dev as Ops

In particular:
Move to simplicity may have gone too far and dropped security
Barrier lowering - people performing roles they aren’t experienced for,
people *can* perform roles they aren’t experienced for

Building scalable
systems

• Cheaper infrastructure

• Scale horizontally

• Distributed processing

• Network reliant

• Homogeneity

•

http://ngphotooftheday.blogspot.com/2007_12_01_archive.html

Key cloud requirement, and way world is going

The need for caching

• Most data remains constant

• Create Once, Consume Many

• Wikipedia page contents

• Youtube video links

• FB Profile data

• Full regeneration expensive

• Don’t regenerate, rather regurgitate

Most sites are write few, read many
Sites like FB touch many subsystems to generate a page (e.g. ads,
comments) - hence cache

• Too many options

• Focus on app
layer

• Focus on popular

Ehcache

Persistent KV Store

Persistent Store

KV Store

Persistent KV Store

Obj Store

Memcached

MemcacheDB

Websphere eXtreme Scale

Oracle Coherence

Redis

Obj Store

Google BigTable Persistent Store

Caching Solutions

Just showing all the options, and showing focus on memcached
Most popular & app level

memcached

• memcached.org

• Written for LiveJournal (2003) by Brad Fitzpatrick

• About 10k loc for *nix, Windows

• Non-persistent network-based KeyValue store

• Current version 1.4.5.

Very specific use case in mind when written. Experienced sysadmins
will run it in secured env.
Noone has looked at it for 7 years.
Not particularly sexy, get’s overlooked
Big sites run this. Worry about scalability.
10k lines of code (small app, cross platform)
Point 4 - break down “non persistent; no to disk” & “network-based;
tcp/udp” & “key value; familiar data structure e.g. dictionary”

memcache Internals

Architecture

Memcache not inline component, addon assistant to app-server. If
removed, whole thing will still work, just slower.

Memory

• Key/value pairs stored in-memory only

• At startup, memory is reserved and divided into equal sized slabs

• Each slab further dived according to class size

• Limited size, larger classes hold fewer items

• LRU eviction

• Total storage for data is key+value+overhead

• Up to 56-bytes on 64-bit

• Up to 40-bytes on 32-bit

• Each key has an expiry time (0==never expire)

• Expired keys are lazily removed

We care about this for building a mining tool.
Mem -> Slabs (equal) -> Slab/Class size (each slab has different class
size) -> entries/items
Largest item can store in memcache is 1M
Least Recently Used (LRU) - oldest items dropped when space required
Expiry a bit like FS deletion, items hang around till space needed or till
you *request them*

Memory

Users don’t care about slabs

(Miners care about slabs)

We care about this for building a mining tool.
Mem -> Slabs (equal) -> Slab/Class size (each slab has different class
size) -> entries/items
Largest item can store in memcache is 1M
Least Recently Used (LRU) - oldest items dropped when space required
Expiry a bit like FS deletion, items hang around till space needed or till
you *request them*

Integration

20ms20ms

500ms500ms

40ms40ms

Points to note:
 - Memcached requires explicit integration, it’s not automatic
cacheing

example use: check if in cache, if not fetch from db, insert into cache
db - parsing, reading from disk
numbers made up, showing relative difference

Clustering

• Clusters are easy to implement (client-side clustering)

• Each node unaware of other nodes

• Clients load balance based on key value

• Keys are hashed to pick node

• Adding nodes requires code changes in the client
(and will cause keys to be remapped)

• Clients must stick to the same hashing algorithm

• Clients use long-lived TCP connections, should be
pooled and shared amongst workers

Came across clusters when we were exploring. Usually same level of
sec applied across all members of cluster. One member doesn’t know
it’s part of a cluster, entirely client-driven. Client-lib handled
clustering approach (usually roundrobin).

Adding servers requires some keys to be remapped. Exisiting value
regened and placed in new server, old value expires.

Network
• Typically binds to

0.0.0.0:11211, both
TCP and UDP

• Two protocols
(default):

1. ASCII (specified in
protocol.txt)

2. Binary (specified in a
draft expired RFC)

Four code paths:

1. TCP/ASCII

2. TCP/Bin

3. UDP/ASCII

4. UDP/Bin

=

Binds to *any* by *default*. Certain distros lock down to localhost (tcp).
protocol.txt is on memcache website
binary protocol worked on in 2007, attempts to standardise were eventually
dropped
Server will detect which one client is trying to use
Thus, 4 possible code paths for one action, increasing attacks surface
unnecessarily
one packet DoS possible in UDP/Bin code path for e.g. (corrupted binary
protocol packet) talk about later

ASCII command set

[set | add | replace | append | prepend | cas] key flags expirytime [cas_unique] [noreply]

[get | gets] keys

delete key [noreply]

[incr | decr] key value [noreply]

stats [| settings | sizes | slabs | items | reset]

stats detail [on | off | dump]

stats cachedump slab_id key_limit

flush_all

version

verbosity level

quit

Protocol: ASCII
[demo]

Commands
followed by \r\n,
the storage
commands are
multi-line.

Not limited to memcached

Grammar for entire ascii protocol - simple++
18 commands, not all take params even
Some commands are multiline (e.g. storage)
Drawback to ascii, some characters are excluded from key name - one of reasons for bin protocol dev

audience: anything missing? ... auth!

beauty with caches is that they strip away virtually all access control. worse than connecting to the DB as an admin user.

memcache actually removed auth. Design decision was taken in 2003 with specific use-case. Implications didn’t travel
with the decision.

There is SASL option on binary protocol, but noone uses it. Libs don’t support it.

Protocol: Binary

Memcached binary protocol packet layout

Don’t spend much time here. Just showing it, but later attacks don’t
use it much.

Command Opcode
GET
SET

ADD
REPLACE

DELETE
INCREMENT
DECREMENT

QUIT
FLUSH

GET QUIET
NOOP

VERSION
GET RET WITH KEY

GET RET WITH KEY QUIET
APPEND

PREPEND
STAT

SET QUIET
ADD QUIET

REPLACE QUIET
DELETE QUIET

INCREMENT QUIET
DECREMENT QUIET

QUIT QUIET
FLUSH QUIET

APPEND QUIET
PREPEND QUIET

SASL LIST MECHANISMS
SASL AUTH
SASL STEP

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0a
0x0b
0x0c
0x0d
0x0e
0x0f
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
0x1a
0x20
0x21
0x22

Not documented cleanly anywhere, slav went through header files to
pull this out. That’s where we leave it.

• DoS in memcached (CPU and response)

• If your memcached listens on UDP
(default), then there’s an easy DoS using
one packet per thread

• Kill memcachedb (segv in 1.2.0, assert
trigger in 1.2.1)

• DoS memcachedb disks with bandwidth
multiplication (high double-digit ratio of
network -> disk byte count, e.g. ~1:40)

Fuzzing results

-t specifies no of threads at startup. Default is 4. DoS kills thread,
pushes parent up to 100%. TCP remains up.
If sharing box then other proc affected

memcachedb DoS, but just result, not examined

amplification due to use of journals.

Hunting memcacheds
Where to look

• Blindly scan: nmap -iR

• :(Lots of misses

• Target particular companies

• :(How many companies run
memcacheds?

• Predict where the herds go

• 1) Who runs memcached? (Hint:
people worried about scalability)

• 2) where do people with
scalability worries go?

What to look for

• Open ports

• Either TCP or UDP

• Port 11211 is default

• Not enough to find an open port, we can
also verify with the “version” command

• TCP scanning is slow, 10 packets to get
answer

• UDP scanning is much faster

• { UDP } = { TCP } ?

■ Hosting companies or
Cloud Providers ■ UDP scanner is trivial

nmap: took long time, large swathes will have nothing

Probability of finding memcache at target is also low. e.g. if you get into internal,
searching for memcaches isn’t a good first start

If the target is memcache server instead of company, then work out where herds
go.

Is the set of hosts listening on UDP == those using TCP. No, because some distros
lock down to TCP only. But we got what we wanted from UDP. Most mc we found
had default settings

• You provide netblocks, addresses,
hostnames

• It sends a UDP “version” packet to each
target

• If response matches the memcached UDP
format, mark it as found

• UDP scanning means timeouts...

• Still doesn’t take long

memcachefinder.rb
[demo]

practical: sign up to cloud provider to get better look
current /16 is malaysian provider. POssibly update for UAE provider

You found the cache?
Profit!

Cache mining

Would be great to:

• extract contents of the cache

• look for interesting data

• determine what the cache is used for

• overwrite entries in the cache

With 250 caches, how to prioritise?

Mining commands

• We can explore the cache with three commands:

• get

• Requires a key name

• set

• Require a key name

• stats

• Permits retrieval of slabs and keys

before we can prioritise we must talk nuts & bolts
we need a fingerprint from each cache using protocol commands

Retrieving slabs ids
• stats command has sub-

commands

• items

• slabs

• ...

• (Could also enumerate
the slabs, they’re
numbered from 1 to ~40)

This gets us the slabs ids

stats slabs
STAT 1:chunk_size 80
<...>
STAT 2:chunk_size 104
<...>
STAT 3:chunk_size 136
<...>
STAT 4:chunk_size 176
<...>
STAT 6:chunk_size 280
<...>
STAT 8:chunk_size 440
<...>
STAT 9:chunk_size 552
<...>
STAT 9:cas_badval 0
STAT active_slabs 7

Good demo point. go-derper

Retrieving key names
cachedump subcmd returns a limited number of keys per slab:

stats cachedump <slab> <limit>

• <slab> is an active slab id

• <limit> the number of keys to retrieve (0 means all possible keys)

• Note: Only 2MB of key data will be returned, not entire keyspace

• Assume average keysize at 30 chars; that’s over 38,000 keys

• Note 2: cachedump returns expired keys (remember the lazy key removal)

• If hitting the 2MB limit, try deleting (or getting) expired keys to force their
removal. ‘flush_all’ is a nuclear option for this.

go-derper now won’t fetch expired keys, speeds things up

very few log files & you can kill logs remotely. flush_all will get you
noticed though

And this gets us?
• No need for complex hacks. memcached serves up

all its data for us.

• What to do in an exposed cache?

• Mine

• SQLi is too hard for me

• Overwrite

• Client-side

• Server-side

Likely all DB data in cache, get it there instead of DB

Can XSS - client

Server-side covered later, possibly exploit

Mining the cache

go-derper.rb – memcached miner

• Retrieves keys from each slab, their
contents & stores on disk

• Applies regexes and filters matches in a
hits file

• Supports easy tampering of cache entries

introduce go-derper

point at server, download e.g. 20 keys from each slab

go-derper modes

• -f fingerprint mode (fetches stats data from a list of
memcacheds, enables prioritising, helps spot clusters)

• -m monitor mode (polls a single server indefinitely,
reporting changes in statistics)

• -l leach mode (extracts keys and their values from
the cache)

• -w write mode (writes modified data back to the
cache)

• -d delete mode (delete a key from the cache)

[demo]

Finding the Front-end
• What you’d expect:

• DNS

• Netblocks

• Cache data

• URLs

• Google strings

• Email addresses

• Callbacks (remote code exec)

you can make the app server contact you to find location (callback)

Scan Results

IPs scanned 2^16 + 2^19
of caches found 894
Retrieved Items 8.9GB
Average uptime ~64days

Total bandwidth used 9.5PB
Total entry count 447 million
Total Bytes stored 59TB

Highest bandwidth 247TB
Highest entry count 133 million
Highest Bytes Stored 19.3GB

Results: Contents
• HTML

• JavaScript

• Data

• Email

• Passwords (clear-
text, crypt’ed,
MD5)

• Compressed data

• Objects found

• Serialized Java

• Pickled Python

• Ruby ActiveRecord

• .Net Object

• JSON

• SQL strings

only one cache with compressed data, go-derper supports it (-z)

Results: Examples

Globworld

Fupa Games

Gowalla

md5 hashes were unsalted

cleartext creds & shared creds

Bit.ly Pro

PBS

html and vote counts stored in theirs

Sidebar: serialized objs

• Python’s pickle intentionally insecure

• But they’re exposed!

• Pickle shellcode

cos
system
(S'echo hostname'
tR.

• Paper almost submitted

[demo]

Pickle was most common serialised objects. Approx 1/3 had serialised objects.
Django uses pickle by default

os.system(“echo hostname”)

Can get shellcode to run, but not clean. Quick fix, delete full stop at end of tR

Can also output, edit HTML to:
csubprocess
check_output
((S’uname’
S’-a’
ltR

Fixes?
• Firewall. Firewall. Firewall. Firewall. Firewall. (VPC)

• Listen on localhost only, where possible.

• Switch to SASL

• Requires binary protocol

• Not supported by a number of memcached libs

• Hack code to disable stats facility (but doesn’t prevent
key brute-force)

• Hack code to disable remote enabling of debug
features

• Salt your passwords with a proper scheme (PHK’s
MD5 or Bcrypt) [Ptacek]

• Also, Firewall.

Switch to binary isn’t solution.

Simplification of dev/
provisioning

• This issue is pretty lame and easily dismissed,
but that misses a key point

• Poorly designed systems will be abused

• And it’s not just knowledgable people who
abuse systems

• Easy dev/deployment combined with software
that doesn’t protect itself

• Software has to protect itself

Random thoughts

• This can’t be new

• Inject tracker images / strings

• Trace Refers / hit Google

• Key guessing or prediction

• Exposed caches==net storage that never
touches disk. Privacy angle?

• Your data ends up in places you never expected.

Places to keep looking

• Improve data detection/sifting/filtering

• Spread the search past a single provider

• Caching providers (?!?!)

• Other cache software

• Other infrastructure software

Caching provider - supposed to be local & fast, now in cloud? Will you
go to a random DB provider, why go to cache provide

Leave you with: Redis

• Redis is also a key value network storage engine

• Accessed via ASCII TCP protocol

• No auth

• However, it’s persistent, supports increased operations
on data and has more complex data types (e.g. lists)

• Not as widespread (found 29 instances in the same
network we found 250 memcached instances)

• Something to leave you with:

• keys *

keys isn’t a debug command, it’s a default feature
antirez of hping fame writing redis, but same problems

Questions?

www.sensepost.com/labs/tools/poc/go-derper

twitter.com/sensepost

