<

Cache on delivery

marco@sensepost.com

Marco Slaviero

Setup from previous research

Clobbering the cloud looked at providers & their services

However, software stack *used* by providers doesn’t get much sec
exposure

Dan Geer on Comodo

“The most telling part of the certificate
fraud story is that the issuers and the
browser manufacturers solve the problem by
hard coding the broken certs into the
browsers. They do not rely on CRLs. They
do not rely on OCSP.

Think about that for a moment...”

Cloud is still buzzwording

Whether it’s a buzz or not, or new or not, people are changing the
ways they do stuff

Security tradeoff is “watch that basket”, but people aren’t
Previously we’ve looked at cloud-front ends, now we’re looking at
backends

<

Cache on delivery

marco@sensepost.com

Marco Slaviero

Setup from previous research

Clobbering the cloud looked at providers & their services

However, software stack *used* by providers doesn’t get much sec
exposure

Hey we’re from ZA, can be anything
Mention TROOPERS10, invited back, it’s been great

Cloudy Cloud Cloud

The times they are a changin’

If you're going to put all your eggs in one
basket....

Last year “Clobbering the Cloud”
This year “Look Behind the Curtain”

4

Cloud is still buzzwording

Whether it’s a buzz or not, or new or not, people are changing the
ways they do stuff

Security tradeoff is “watch that basket”, but people aren’t
Previously we’ve looked at cloud-front ends, now we’re looking at
backends

Changes

® Massive data sets & user populations
® Less complexity
® Barrier lowering

® Self Service

® Dev as Ops

In particular:

Move to simplicity may have gone too far and dropped security

Barrier lowering - people performing roles they aren’t experienced for,
people *can* perform roles they aren’t experienced for

Building scalable

systems
el

A BT
e - &

Cheaper infrastructure
Scale horizontally
Distributed processing
Network reliant

Homogeneity

hetpi//ngphotooftheday.blogspot.com/2007_12_0I _archive.html

Key cloud requirement, and way world is going

The need for caching

Most sites are write few, read many
Sites like FB touch many subsystems to generate a page (e.g. ads,
comments) - hence cache

Caching Solutions

L TypePad
Persistent KV Store yp

Persistent Store ® Too many w

KV Store

° 4 3
Memcac neDB Persistent KV Store Focus on geh SRR 3
layer
Obj Store

Obj Store ® Focus on popular

Google BigTable Persistent Store

Just showing all the options, and showing focus on memcached
Most popular & app level

.!, memcached

® memcached.org
® Written for LiveJournal (2003) by Brad Fitzpatrick
® About |0k loc for *nix, Windows

® Non-persistent network-based KeyValue store

® Current version |.4.5. ‘

Very specific use case in mind when written. Experienced sysadmins
will run it in secured env.

Noone has looked at it for 7 years.

Not particularly sexy, get’s overlooked

Big sites run this. Worry about scalability.

10k lines of code (small app, cross platform)

Point 4 - break down “non persistent; no to disk” & “network-based;
tcp/udp” & “key value; familiar data structure e.g. dictionary”

memcache Internals

i 0F

Architecture

Memcache not inline component, addon assistant to app-server. If
removed, whole thing will still work, just slower.

Memory

® Key/value pairs stored in-memory only
® At startup, memory is reserved and divided into equal sized slabs
® Each slab further dived according to class size
® Limited size, larger classes hold fewer items
® | RU eviction
® Total storage for data is key+valuetoverhead
® Up to 56-bytes on 64-bit
® Up to 40-bytes on 32-bit ‘
® FEach key has an expiry time (0O==never expire)

® Expired keys are lazily removed

We care about this for building a mining tool.

Mem -> Slabs (equal) —-> Slab/Class size (each slab has different class
size) -> entries/items

Largest item can store in memcache is 1M

Least Recently Used (LRU) - oldest items dropped when space required

Expiry a bit like FS deletion, items hang around till space needed or till
you *request them*

4 S | S—
slab 1 (<10B) slab 3 (<100B) slab 9 (<512B) slab 16 (<1MB)

k123=v321 alsok92=v09... || plansforLS=... shortk=slongv

k43=s"blah" k93=sv812..5

alsok92=-v09 k1="suare..."

Cache in memory

Users don’t care about slabs ‘

(Miners care about slabs)

We care about this for building a mining tool.

Mem -> Slabs (equal) —-> Slab/Class size (each slab has different class
size) -> entries/items

Largest item can store in memcache is 1M

Least Recently Used (LRU) - oldest items dropped when space required

Expiry a bit like FS deletion, items hang around till space needed or till
you *request them*

Integration

= =)

get_user_profileCuser_id)
profile = .getCuser_id)
return profile if profile

profile = get_pr‘oFi1e_Fr'om_db(pr'oFi1e)Ksooms

.set(user_id, profile)
return profile \
40ms

Points to note:
- Memcached requires explicit integration, it’s not automatic
cacheing

example use: check if in cache, if not fetch from db, insert into cache
db - parsing, reading from disk
numbers made up, showing relative difference

Clustering

® Clusters are easy to implement (client-side clustering)
® FEach node unaware of other nodes

® Clients load balance based on key value
® Keys are hashed to pick node

® Adding nodes requires code changes in the client
(and will cause keys to be remapped)

® Clients must stick to the same hashfﬁ'g algorithm

® Clients use long-lived TCP.connections, should be
pooled and shared amongst workers

Came across clusters when we were exploring. Usually same level of
sec applied across all members of cluster. One member doesn’t know
it’s part of a cluster, entirely client-driven. Client-lib handled
clustering approach (usually roundrobin).

Adding servers requires some keys to be remapped. Exisiting value
regened and placed in new server, old value expires.

Network

® Typically binds to
0.0.0.0:11211, both
TCP and UDP

Four code paths:

e Two protocols |. TCP/ASCII
(default): 2. TCP/Bin
I. ASCII (specified in 3. UDP/ASCII
protocol.txt)
2. Binary (specified in a LD /Bin
draft expired RFC) "4

Binds to *any* by *default*. Certain distros lock down to localhost (tcp).
protocol.txt is on memcache website

binary protocol worked on in 2007, attempts to standardise were eventually
dropped

Server will detect which one client is trying to use

Thus, 4 possible code paths for one action, increasing attacks surface

unnecessarily
one packet DoS possible in UDP/Bin code path for e.g. (corrupted binary

protocol packet) talk about later

el

[set | add | replace | 2 E%ganﬁaﬂn.a B g jue

[get | gets] keys

Security Cor

Memcache has no authg¢
memcache be deployed
center, within a single cl
multiple applications. M¢

version
verbosity level

quit

Not limited to memcached

Grammar for entire ascii protocol - simple++

18 commands, not all take params even

Some commands are multiline (e.g. storage)

Drawback to ascii, some characters are excluded from key name - one of reasons for bin protocol dev

audience: anything missing? ... auth!

beauty with caches is that they strip away virtually all access control. worse than connecting to the DB as an admin user.

memcache actually removed auth. Design decision was taken in 2003 with specific use-case. Implications didn’t travel
with the decision.

There is SASL option on binary protocol, but noone uses it. Libs don’t support it.

Protocol: Binary

Magic Opcode Key length

Extras length Data type Reserved

Total body length

Opaque

CAS

Extras (0 = length <256)

Key (0 < length < 65536)

Value (0 < length < size_max)

Memcached binary protocol packet layout

Don’t spend much time here. Just showing it, but later attacks don’t
use it much.

s

DECREMENT

QuUIT

FLUSH

GET QUIET

NOOP

VERSION

GET RET WITH KEY

GET RET WITH KEY QUIET

INCREMENT QUIET
DECREMENT QUIET
QUIT QUIET

FLUSH QUIET

APPEND QUIET
PREPEND QUIET

SASL LIST MECHANISMS
SASLAUTH

SASL STEP

Not documented cleanly anywhere, slav went through header files to
pull this out. That’s where we leave it.

Fuzzing results

® DoS in memcached (CPU and response)

® [f your memcached listens on UDP
(default), then there’s an easy DoS using
one packet per thread

® Kill memcachedb (segv in 1.2.0, assert
trigger in 1.2.1)

e DoS memcachedb disks with bafidwidth
multiplication (high double-digit ratio of
network -> disk byte count, e.g. ~1:40)

-t specifies no of threads at startup. Default is 4. DoS kills thread,
pushes parent up to 100%. TCP remains up.

If sharing box then other proc affected

memcachedb DoS, but just result, not examined

amplification due to use of journals.

nmap: took long time, large swathes will have nothing

Probability of finding memcache at target is also low. e.qg. if you get into internal,
searching for memcaches isn’t a good first start

If the target is memcache server instead of company, then work out where herds
go.

Is the set of hosts listening on UDP == those using TCP. No, because some distros
lock down to TCP only. But we got what we wanted from UDP. Most mc we found
had default settings

memcachefinder.rb

time ./memcacl

practical: sign up to cloud provider to get better look
current /16 is malaysian provider. POssibly update for UAE provider

e y >
-~ > ;‘\,:

You f#nc"l t cache!
Profit!

- 4.5

Cache mining

Would be great to:
® extract contents of the cache
® |ook for interesting data
® determine what the cache is used for
® overwrite entries in the cache

With 250 caches, how to prioritise?

Mining commands

® We can explore the cache with three commands:
® get
® Requires a key name
® set
® Require a key name

® stats -~

® Permits retrieval of slabs and keys

before we can prioritise we must talk nuts & bolts
we need a fingerprint from each cache using protocol commands

Retrieving slabs ids

® stats command has sub-
commands

® jtems

® slabs

® (Could also enumerate
the slabs, they're
numbered from | to ~40)

stats slabs

STAT 1l:chunk size
<.oo.>

STAT 2:chunk_size
SERE—

STAT 3:chunk_size
<eoo>

STAT 4:chunk_size
<eoo>

STAT 6:chunk_size
<.eoo>

STAT 8:chunk_size
<eoo>

STAT 9:chunk_size
<.eoo>

STAT 9:caSMbadval
STAT aétlve_slabs

This gets us the slabs ids

Good demo point. go-derper

80

104

136

176

280

440

552

0
7

Retrieving key names

cachedump subcmd returns a limited number of keys per slab:
stats cachedump <slab> <limit>
<slab> is an active slab id
<limit> the number of keys to retrieve (0 means all possible keys)
Note: Only 2MB of key data will be returned, not entire keyspace
Assume average keysize at 30 chars; that’s over 38,000 keys
Note 2: cachedump returns expired keys (remember the lazy key removal)

If hitting the 2MB limit, try deleting (or getting) expired keys to force their
removal. ‘flush_all’ is a nuclear option for this.

go-derper now won'’t fetch expired keys, speeds things up

very few log files & you can kill logs remotely. flush_all will get you
noticed though

And this gets us!?

® No need for complex hacks. memcached serves up
all its data for us.

® What to do in an exposed cache!?
® Mine
® SQLiis too hard for me
® Overwrite
® Client-side

® Server-side

Likely all DB data in cache, get it there instead of DB
Can XSS - client

Server-side covered later, possibly exploit

Mining the cache

go-derper.rb — memcached miner

® Retrieves keys from each slab, their
contents & stores on disk

® Applies regexes and filters matches in a
hits file

® Supports easy.tampering;of cﬁe entries

introduce go-derper

point at server, download e.g. 20 keys from each slab

2,68E+08
2,68E+08
2,68E+08
2,68E+08
2,68E+08
2,68E+08
2,68E+08
2,68E+08

1048576

1048576 1,28732E+11
1048576 1,28733E+11
1048576 1,28758E+11
1048576 1,28774E+11
1048576 1,28776E+11
1048576 1,28777E+11

1,87103E+11
1,87105E+11
1,87148E+11

1,8717E+11

1,87173E+11
1,87173E+11

3,15835E+11
3,15839E+11
3,15906E+11
3,15943E+11
3,15649E+11

3,15956+11

439942602
439949099
440038342
440088986
440095494
440097514

315367182
315372389
315424835
315457923
315462482
315463905

85971648
86000279
83936295
85389639
85396200
85533224,

1048576 1,28845E+11

1,87264E+11

3,16109E+11

173

315624077

85365615

117674
118182
112146
115034
115189

1048576
22094526077
14350927368

1,96683E+11

2.02093E+11

2,18778E+11

L 2.16444E411

8089535

142668092

10890921
5700311,

5707248

269937575,

cacne)

-d delete mode (delet

e a key from the cache)

Finding the Front-end

® What you'd expect:
® DNS
® Netblocks
® Cache data
® URLs
® Google strings -

® Email addresses

® Callbacks (remote code exec)

you can make the app server contact you to find location (callback)

Scan Results

of caches found 894
| Retrieved Items | 8.9GB |

Highest bandwidth
133 million
Highest Bytes Stored 19.3GB

Results: Contents

e HTML ® Objects found
® JavaScript Serialized Java
® Data Pickled Python

® Email Ruby ActiveRecord

® Passwords (clear- Net Object

text, crypt’ed,
MD5) JSON

® Compressed data SQL strings

only one cache with compressed data, go-derper supports it (-z)

Results: Examples

globwor ld.
:12:"displa

beta.globwo
3 e1: 7"

Remember Me

Lost your password?

(Crime Lords) - Mafia City Mobsters | Like |

wall Info Reviews Discussions Our Games

Suggest to Friends

Block Application

Play now:
http:/ /apps.facebook.com/c
rime-lords/

Information

Kk kK (4.6 out of 5)
ased on 365 reviews

rs
298,402 monthly active users

Category
Games

This application was not
developed by Facebook

11,093 People Like This

Sabus Asilah Lim Markshee
Sabustoni n Tagra

Play

e
'

SEFEEOY

Home Spots Trips Passport Q

ibylla.

@ 1 Varberg pé cruising

ﬁ Phontus QU Kolonin

Y
@
@
@

Kikar lunch med Katte :)

Shopping.

Sign Ou
o]
14
pins
Tvittstugan
about 2 hours ago
m Travelshop
about 2 hours aggy
OrdArt
about 2 hours ago
Add Friends
3 Focesoo g er
M cmait 27| Hotmail
[invite by Email B Search
11 friends See all friends

EEPE
AWEmn

md5 hashes were unsalted

AiHewMat Heo ™ Trendeur #1010 o Lavw @
@ - C (ot 0T EEEEERERN https:/imail.google. com/mailf2shva=14#inbox Ny -| 48

[8] Most visited | | Learn more about Tor |] The Tor Blog

) G- oo QD -

Gmail Calendar Web Documents Reader more v G ! Priority Inbox®" | Settings | Help | Signout

Show search options
Search the Web g coic, ey

ML Natastia ~ Sian Out

Search Mail

I i Couoors - ; : huge coupon

Contacts

a day
T | CIv || Archive Reportspam Delete)| Movetow | Labelsw

Inbox
Buzz -4
Starred %
Sent Mail
Drafts

W Notes

8 Personal

W Travel
B morey

Chat

Set status here

cleartext creds & shared creds

Bit.ly Pro

O EEEES———

€ 9 C O waw.stackezy.com/pic

SgnUpForfroel FomotPassword Porfolo Waichilst

ting Cemmunity

DSE Sensex 20250.36 W 5506 «0.37% | NFTY (567 CN) 610045 W 16,05 :0.28% | Ingia ViX21.40 W.1.06 | 40a%

Fri,OCt 00, 2010 (4 COPM IST ks Markats Gloned.

GET QUOTE STOCKPICKS | seArc |

Rate Stocks m

Tost Stook Picks against Bost lovestors & prove your Investing Tafent. Add a Pick

K. Now, you can copy
top traders' success!

D) 0y Trace ks Shon Taem Picks Macium Tarm Picks Start Now. >

Active Picks All Buys Sells Best Porforming

[j ot
% Vikash Agarwal recomenends for intraday
%5 BUY Jindal Poly Fikms Lid
Stant Price: 1079.65 | Taget: 109300 | Last Trade: 1079.65 | Ratum Activity Snapshot
Day Trading Picks: 690 (view)
Viknsh Aganwal recemmands for intraday
SELL Bankof inde Buy: 632 (view) Sall: 58 (view
Price: $58.20 | Ta 00 | Last Tr 20 | Retum
Start Price: 55820 | Tamot: 5¢8.00 | Last Trade: §58.20 | Re Short Tem Picks: 2458 (view)
Buy. 2277 (view) Sell
Agarwal recommends for intraday
BUY Hanung Toys and Textiles Lig Medium Tarm Picks: SAB1 (view)
Start Prico: 34895 | Targot: 360.00 | Last Trade: 348.05 | Retum

178 (view

Buy. 5275 (view) Sell
Krishna Raj recommends lor 3 Months g Term Picks 6373 (view!
BUY _South indian Bank Lid

html| and vote counts stored in theirs

nnn PEP 307 -~ Exsensions 1o the pickle protocol
aLe L3 # ip 1 wow pyon org/estpessipes-0307 & e ¢ o

We firmly believe that, on the Internet, it is better to know that
you are using an insecure protocol than to trust a protocol to be
secure whose implementation hasn't been thoroughly checked. Even
high quality implementations of widely used protocols are
routinely found flawed; Python's pickle implementation simply
cannot make such guarantees without a much larger time investment.

T e e e e g e e e Y e

cannot make such guarantees without a much larger time investment.|

Therefore, as of Python 2.3, all safety checks on unpickling are
officially removed, and replaced with this warning:

*** Do not unpickle data received from an untrusted or
unauthenticated source ***

rxrenaed ___reauce___ Arl

There are several APIs that a class can use to control pickling.
Perhaps the most popular of these are _ getstate__ and
__setstate__; but the most powerful one is __reduce__. (There's
also _ getinitargs__ , and we're adding __ getnewargs__ below.)

There are several ways to provide reduce functionality: a
€

Pickle was most common serialised objects. Approx 1/3 had serialised objects.

Django uses pickle by default

os.system(“echo hostname”)

Can get shellcode to run, but not clean. Quick fix, delete full stop at end of tR

Can also output, edit HTML to:
csubprocess

check_output

((S’uname’

S’-a’

[tR

Fixes?

Firewall. Firewall. Firewall. Firewall. Firewall. (VPC)
Listen on localhost only, where possible.

Switch to SASL

® Requires binary protocol

® Not supported by a number of memcached libs

Hack code to disable stats facility (but doesn’t prevent
key brute-force)

Hack code to disable remote enabling of debug
features

Salt your passwords with a proper scheme (PHK’s
MD5 or Bcrypt) [Ptacek]

Also, Firewall.

Switch to binary isn’t solution.

Andrew Gray, Program Coordinator at University of
British Columbia, enjoying root access to a new
Cloud Server. Even though he had never
administered a server before, Andrew was able to
spin up a Cloud Server with no issue. The steps he
used to create it are on the left.

that doesn’t protect itself

® Software has to protect itself

Random thoughts

[ey by your » b, 50 pard in yous

© 17 Cache On Delivery — Memcached Opens an Accidental Security Hole

Poated by oty om Ssnrdey Aupat 37, Q02 AN
o e raryPeng has-+ Sownece cesE.

1 80081 793 0y G0 (revertalion (N & Croe salbaratir) about how essy @ 1 83 Ceta 140 lve Galh 00 PNy Ses NG Tarractnl Wity
U you aireacy kncw what mamcached i, skim i wide #17. The jaw-Sp wil hapoen sround sice K33, Tume out many webstes axpose her fotally-non-froticted memcached Ftatace 13 the intamet, nchudng gowste, BLly and PIS * y i ?
Besd Meen. 100 10 comments

® Exposed caches==net storage that never
touches disk. Privacy angle?

® Your data ends upin places you never expected.

Places to keep looking

Improve data detection/sifting/filtering
Spread the search past a single provider
Caching providers (2!?!)

Other cache software

Other infrastructure software &

Caching provider - supposed to be local & fast, now in cloud? Will you
go to a random DB provider, why go to cache provide

Leave you with: Redis

® Redis is also a key value network storage engine
® Accessed via ASCII TCP protocol
® No auth

However, it’s persistent, supports increased operations
on data and has more complex data types (e.g. lists)

Not as widespread (found 29 instances in the same
network we found 250 memcached instances)

Something to leave you with: ‘

® keys*

keys isn’t a debug command, it’s a default feature
antirez of hping fame writing redis, but same problems

Questions?

www.sensepost.com/labs/tools/poc/go-derper

twitter.com/sensepost

