Letting your fuzzer know about target’s
internals

Rodrigo Rubira Branco (BSDaemon)

Senior Vulnerability Researcher

Vulnerability Research Labs (VRL) — COSEINC
rodrigo_branco *noSPAM* research.coseinc.com

COSEINC

—

e

e e e e T e e I T e T e T

= Objectives / Introduction
= Fuzzers and misconceptions
= [nto software flaws

= Target’s internals
= |Implementation details and limitations

= Future

e e e T o i,

EVERYTHING in 30 MINUTES!

COSEINC

\}

e

e e e e T e e I " e e mm e T e T e T e —

= Show the added value of Hacking

= Demonstrate how fuzzers works, and why/when they are
useful (or not)

= Explain what are the target useful internals information
= Explain how a debugger works

= Analyze security bugs and useful informations to feed
back a fuzzer

COSEINC

w

Security nhowadays
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

= Buggy programs deployed on critical servers

= Rapidly-evolving threats, attackers and tools
(exploitation frameworks)

= |Lack of developers training, resources and people to fix
problems and create safe code

= That’s why we are here today, right?

COSEINC

N

Security nhowadays — 0Oday challenge
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

T T T T i —

First host All vulnerable hosts
attacked attacked
| |
| | >
\)
~—

Reaction time
Slammer: 10 mins
Future worms: < 1 minute [Staniford et. al. 2002]

“Oday Statistics
Average 0day lifetime:
348 days

Shortest life:

99 days

Longest life:

1080 (3 years)"

- Justine Aitel
T | [

Even gartner says so...

Cizairirier: 710 ey Pradicilons for 2007

'#5 By the end of 2007, 75 percent of enterprises
will be infected with undetected, financially

' motivated, targeted malware that evaded their
itraditional perimeter and host defenses. (source:
'eWeek based on Gartner)

COSEINC

Introduction — What is a fuzzer?
——,——— e s s — —,— e s —— ————

_— = = = — — R B — e T) — — e T

= “Fuzz testing, fuzzing, Robustness Testing or
Negative Testing is a sofiware testing technique that
provides random data ("fuzz") to the inputs of a program.
If the program fails (for example, by crashing, or by
failing built-in code assertions), the defects can be noted.

The great advantage of fuzz testing is that the test
design is extremely simple, and free of preconceptions
about system behavior.”

» Source: Wikipedia

COSEINC

Fuzzer - Misconceptions
= e = = = ——— = = = —— = ————————— ———

_— = = = — — — _—— e = = e, — — e T) — — L R R,

= |n the definition itself:

“If the program fails (for example, by crashing, or by failing built-in code
assertions), the defects can be noted.” -> What if the program does not
fail, but, for example, a memleak occur?

= |n the code coverage principle:

— It is important to fuzz other portions of the code (i.e. application
expecting “auth: “ in the beginning of the buffer)

— It does not tell you how good are the fuzzer (90% of code coverage may
spot just 10% of the bugs if they miss important security-related
constructions)

= Inthe way it is done nowadays:
— ‘Dumb’ fuzzers -> Really bad input streams
— Code coverage are based in static analysis and function flows
— Most of the fuzzer solutions, are missing the target’s internal information

COSEINC

(o]

Fuzzing — Actual State
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

_— = = = — — — _—— e = = e, — — e T) — — L R R,

= Full fuzzer uses a protocol specific (think RFC) to the
target program and works only for that protocol (i.e:
SMTP fuzzer)

= Mutation fuzzer (sometimes called capture/replay) starts
with some known good data, changes it somehow, and
than repeatedly delivers mutations of that data to the

target.

Source: Revolutionizing the Field of Grey-box Attack Surface
Testing with Evolutionary Fuzzing

COSEINC

O

Evolutionary Fuzzing
o= ——— - — — — — — ———— — — _—— _ —————————

= Use static analysis to feedback the fuzzer and achieve
code coverage

= The fuzzer is responsible for changing the input data
based on the information returned by the fuzzer, thus,
learning the underline protocol

= Use sessions based on the protocol graph and coverage
— tieing together multiple requests

COSEINC —

Into software flaws — Low level

vulnerabilities
e

_— = = = — — _—— = = = — — — _—— = = = e — — _—— = = = — —

= Memory Corruption Vulnerabilities
— Popular means to take control of target program

— 49% of all attacks in 2006 (yeah, we all know that web-based
vulnerabilities are evolving)

— Successful attacks cause a remote code execution

— Attack techniques: stack and heap overflows, integer problems
(leading to overflows or memory disclosure) and others

= Trigger the vulnerability will lead to program crash
— Fuzzers usually detect a flawed application when it crashes

— As said, they miss many other cases (memleaks and syncing
problems)

— ASLR-based systems turn this even more unpredictable in the
real-world

COSEINC .

Memory corruption
o= ——— - — — — — — ———— — — _—— _ —————————

e e e e T e R e e e e B e e e e e e e e e B e e e e B i i

0x08048000 0x40000000 0xC0000000 OxFFFFFFFF
OMB ~128 MB 1GB 3GB 4GB

L 4

DSO DSO Kemel
1 2
NOP Attacker’s code retAddr

COSEINC

12

State Transition for Memory Corruption

e e e e T e e I " e e mm e T e T e T e —

= Case 1
) Non-takeover instr / with
(green) - incorrect addr predict.ion (i=/) Takeover instr /

Format String with correct addr

o ol DA diction :
A~ Initial Critical Data™~.P"® Security
- Case 2 and 3 Normgﬂ/ Corruptmg»gorruptlon/ Compromise

(red and instr ¢ (c=/)
blue): buffer R R @
overflow 28 SN o,
812 @ C‘}‘Q} g S ﬁ@o 2'5‘;
= Case 4 T 0 & S0 O/,'OO / %’m .
e = T oo \C) /- /f
(purple): g P s, N

unpredictable
Faulting instruction /'~ ~[nconsistent™,

Source: Q_)Eecuti_ciry

@

Automatic Diagnosis and
Response to Memory
Corruption Vulnerabilities

COSEINC

C: corrupting instruction
t: takeover instruction
f: faulting instruction

13

e

_— = = = — — R B — e T) — — e T

= | egitimate assumption:

— To change the execution of a program illegitimately we need to
have a value being derived from the attacker’s input (which we
call: controlled by the attacker)

= String sizes and format strings should usually be
supplied by the code itself, not from external, un-trusted
iInputs.

= Any data originated from or arithmetically derived from
un-trusted source must be inspected.

COSEINC

Taint Analysis

_— = = = — — R B — e T) — — e T

Tainted data: Data from un-trusted source
Keep track of tainted data (from un-trusted source)

Monitors program execution to track how tainted attribute
propagates

Detect when tainted data is used in sensitive way

Taint check perform dynamic taint analysis on a program
by running a program in its own emulation environment.

COSEINC

Taint Analysis

X86 instruction

f U Code

|)

Valgrind
emulator

U Code
/ ¢ |

X86 instruction

Source: Dynamic Taint Analysis for Automatic Detection Analysis

COSEINC

Feeding-back our fuzzer
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

. Taint Tracker Taint Assert
Taint Seed
Copy
Data from
Fuzzer Add Attack
) Detected
Pointer
Untainted
Malloc’d Buffer Data "
<

Program’s internal information Feeding-back the fuzzer

Feedback-based fuzzer receiving tainted information and
target’s internal information

Modified from: Dynamic Taint Analysis for Automatic Detection Analysis
COSEINC

Inheritance problems
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

_— = = = — — _—— = = = — — — _—— = = = e — — _—— = = = — —

Problem: state explosion for binary operations !

Propagation
Tracking
%eax inherits from A
B inherits from %eax

mov %$eax <€ A

mov B & %eax

insert D into %ebx’s
inherit-from list

add %ebx < D

|
I |
I .
| (_e.g., malloc/free, system calls :
1 7~ N
I |
I |
I |
I |
I |

Frequent
€.g., memory access,
data movement

COSEINC /=== === = -

18

Dynamic analysis
o= ——— - — — — — — ———— — — _—— _ —————————

= Tracks program state

= Monitors memory writes and checks for violation of
security condition

— A given memory region may correspond to different program variables
depending on program state

— We need to keep track of memory mapping

= Tracks tainted data and its propagation

= |nstrument binary in runtime (mutating the target)

COSEINC

Data Structures — Memory Tracking
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

_— = = = — — R B — e T) — — e T

= Used memory
— Memory corresponding to program variables

= Control memory

— Saved registers, return addresses, metadata encapsulating dynamically
allocated memory regions (heap information blocks)

= Program State (function calls/return)
— Local variable addresses are calculated and added to Used memory

— Location of return address and saved registers are added to the control
memory list

= Heap memory
— malloc/free calls are hooked
— Allocated memory is added to used memory
— The heap metadata are added to the control memory

COSEINC

20

Feeding back the fuzzer
= e = = = ——— = = = —— = ————————— ———

= When a instruction writes to a memory address, check:

— |If the address is in the used list
» Determines the variable it belongs to
» Checks if the value written comes from un-trusted source

» \Validate if the allocation routine have been in somewhat controlled
by the input (resource-starvation attacks)

» Validate the pair, malloc/free to spot memleaks

— |If the address is in the control list
» |t is @ memory corruption

» Feed-back the fuzzer with the program state and input value
responsible for the overwrite

COSEING N

Run-time static analysis
= e = = = ——— = = = —— = ————————— ———

_— = = = — — — _—— e = = e, — — e T) — — L R R,

= Avoid the needle of a single-step to track memory
accesses

= Performance gain (we are fuzzing after all!)

= Remember, every {watch|break|point hit has a penalti:
— Debuggee triggers the {watch|break}point — Trap to OS
— QS gives the control to the Debugger
— Debugger read the status of debuggee from the OS
— Debugee context activated for the information gathering
— OS reads the information
— Debugger activated again, to receive the information

COSEINC

22

e

_— = = = — — — _—— e = = e, — — e T) — — L R R,

= @Gives information regarding the heap structures

— Independent of the OS structures (we feed the fuzzer with the
heap structure — actually supported: Linux)

= Visual view of the heap state

— Important to detect memleaks

— Useful to detect small overwrites that not crash the target
(usually it will crash along the time, turning very difficult to
determine what triggered that condition — ¢ |=f)

— State of the bins
— Very useful for later exploit construction

C: corrupting instruction
f: faulting instruction

COSEINC —

Mutating the target
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

e e e e T e e I " e e mm e T e T e T e —

= |t occurs altering the path of execution
— Bypassing protection directives in runtime

— Feedback the fuzzer with internal information regarding the
protection (useful to find integer overflows)

= (Can be done in kernel mode to instrument the OS kernel
— Patching the original function
— Finding inlined functions using static analysis

COSEINC

24

Genetic Programming
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

—_— = — — — _—— = = = — — — _—— = = = e — — _—— = = = — —

= Machine-learning approach to automatically creating
computer programs by means of evolution

— In the EFS fuzzing, it means create inputs based on the target
internals

— In my approach, it means modifying the target in such a way that
the input fits the conditions, and if a vulnerability is found,
feeding back the fuzzer with the needed information to create the

iInput

= We need to model the call dependencies (program flow
graphs) in order to be sure about the exploitability

vectors
— It is easy since we taint the input
— Do the reverse lookup to find all the trigering vectors

COSEINC

25

Another problem solved...
= e = = = ——— = = = —— = ————————— ———

— _—— = = = — — — _—— = = = e — — _—— = = = — —

= Conditions that does not exist in the default configuration or in the target
configuration

— |L.E.: The vulnerability does exist just when the option ‘X’ is defined in the conf.
File

— Since when the debugger change the condition to ‘true’, it will spot the
vulnerability, but since it's not trigerable changing the input (the condition is not
controlled by a tainted data) feedback the fuzzer with that information (i.e.:
vulnerability detected if condition ‘y’ not controlled by the input do exist)

— This question appeared when auditing a complex software, with many optional
configurations

= Target mutation is needed when testing something not directly controlled by
the attacker input
— This appeared when auditing pop3 caching files
— The email file is created by a SMTP server
— The file is then readed by the pop3 server and then written to the cache

COSEINC —

Why valgrind?

= “The Valgrind tool suite provides a number of debugging
and profiling tools”

= Supports extensions, the plugin tools

= Able to instrument a program in runtime

— Uses an intermediate language, VEX, which are a RISC-like
language

= There is also a standalone version, created to support
more architectures/OSes

COSEINC

27

Valgrind’s Plugins
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

e e e e T e e I " e e mm e T e T e T e —

= pre_clo_init() -> VG_DETERMINE_INTERFACE_VERSION(my_pre_clo_init)

— All the initialization will be done here
» VG_(basic_tool funcs) (my_post_clo_init,
my_instrument,
my_fini);

— Set our handlers:

» VG_(needs_malloc_replacement)()
VG_(track_new_mem_heap)()
VG_(track_new_mem_brk)()
VG_(track_new_mem_mmap)()
VG_(track_copy_mem_remap)()

» VG_(track_change_mem_mprotect)()
VG_(track_pre_mem_read)()
VG_(track_pre_mem_write)()
VG_(track_post_mem_write)()
VG_(needs_syscall_wrapper)()

= post_clo_init() -> my_post clo_init()

= instrument() -> my_instrument()

= fini() -> my_fini()
— It will be called in the end of the process
— Will provide a summary for our fuzzer

COSEINC

28

Instrument() function
= e = = = ——— = = = —— = ————————— ———

e e e e T e e I " e e mm e T e T e T e —

static

IRSB* my_instrument (VgCallbackClosure™ closure,
IRSB* sbin,
VexGuestLayout™ layout,
VexGuestExtents* vge,
IRType gWordTy, IRType hWordTy)

COSEINC

29

Library Preloading Limitations
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

_— = = = — — — _—— e = = e, — — e T) — — L R R,

= Library preloading could be used in some cases to track
the heap (malloc/calloc/realloc/free function hooks)

= |t’s very limited since will miss inlined functions, direct
brk()/mmap() calls and static applications

— Was used in the beginning of the implementation since it's easier
to debug

= |t changes the loading address of the libraries, thus,
breaking the heisenberg principle

COSEINC

30

Distributing the Problem
s = S e ———— — — —— — — — ———— —_ _—— _ _—— ————— ———

_— = = = — — _—— = = = — — — _—— = = = e — — R B g

= An address to the debugger is:

Native Addr.Node Addr.Offset_from_beginning (each
instruction counted by 1 don't matter it's size - we modify
Instructions)

= Because of that we can use a multi-threaded fuzzer to
generate input data for ‘n’ targets (nodes in the cluster)

— Saving the state, synchronizing or whatever to distribute also the
generation work, but it's not really needed unless there is a need
for resume — because most of the ‘cpu-intensive’ work are been
done in the target itself.

COSEINC

31

e e e e T e e I " e e mm e T e T e T e —

= Metaheuristic search algorithms are helping in the target
analysis

= SAT solvers and other decision algorithms

= Address range inspection defined by the fuzzer, avoiding
testing of not ‘needed’ areas of the program and
receiving human-decisions

COSEINC -

Case Study: Solaris Sadmin
= e = = = ——— = = = —— = ————————— ———

_— = = = — — — _—— e = = e, — — e T) — — L R R,

= Solstice AdminSuite is a set of applications for
distributed system administration. sadmind is a daemon
used by Solstice Adminsuite to control the servers
running Sun Solaris operating system.

= Vulnerability found, exploited and released by RISE
Security in October/2008

= Two new vulnerabilities found by Secunia:
— Secunia identifier SA32473, dated 2009-05-23
— No details at *ALL*

COSEINC

33

CVSS Scores
e ———— — e —— ————— — e ————— — o ———

_— = = = — — R B — e T) — — e T

= Temporal score is 7.4 (remote heap overflow):

— Because the exploitability level of this vulnerability is unproven
(hummmm, not anymore...)

= Temporal score is 6.9 (remote integer overflow):

— Because the exploitability level of this vulnerability is unproven
(hummmm, not anymore...) and the complexity for exploitation
(really??).

COSEINC

34

What | hate in advisories?
e = = ==

= No details at all... They are used just as marketing stuff,
not really to help the security community

= What | had? The previous vulnerability and exploit...

COSEINC

35

_— = = = — — R B — e T) — — e T

= The heap overflow vulnerability:
— Occurs in: __ 0fNNetmgtArglistNdeserialValueP6DXDRUITCPc

— The code:
» .text:0000F316 push eax
» .1ext:0000F317 push [ebp+arg 4]
» .text:0000F31A call _xdr u_int <- Tainted value (array size)
» .text:0000F31F add esp, 8
» .text:0000F322 test eax, eax

» .1ext:0000F35E push dword ptr [ecx+408h] <- Tainted value (array size will
be used as parameter for the next call)

» .text:0000F374 call __ OfNNetmgtArglistNdeserialValueP6DXDRUITCPc

COSEINC

36

_— = = = — — _—— = = = — — — _—— = = = e — — R B g

= _text:0000C61D push dword ptr [ebp+arg_C] <- Tainted value
will be used as parameter for the next call (the allocation
itself)

= .text:0000C620 call calloc <- Buffer allocation

= .text:0000C687 call _xdr_bytes <- The buffer is used for the
xdr_bytes call, overwritting the array size with
bytes length from network

COSEINC

37

_— = = = — — _—— = = = — — — _—— = = = e — — R B g

= The integer overflow vulnerability:
— Occurs in: __ 0fMNetmgtBufferFallocUiTB

— The code:

.text:0000A306 cmp dword ptr [eax+4], 0 <- If not allocated
.text:0000A30A jz loc_ A392 <- Allocate

.text:0000A328 mov ecx, [ebp+arg 0] <- Reallocation

.text:0000A32B mov eax, [ecx+8] <- Current Size

.text:0000A32E add eax, [ebp+arg_4] <- Size from the XDR Header (taint it)
.text:0000A331 mov esi, [ebp+arg_8] <- block_size

.text:0000A334 xor edx, edx

.text:0000A336 div esi <- Size divided by block_size

.text:0000A338 inc eax <- +1

.text:0000A339 imul esi, eax <- Multiplying by block_size

.text:0000A33C push esi <- Overflowed integer will be allocated

GDSEII\JC

38

Related Projects
= e = = = ——— = = = —— = ————————— ———

_— = = = — — — _—— e = = e, — — e T) — — L R R,

— AddrCheck:
» Monitor malloc/free, memory accesses

» Check if all memory accesses visit allocated memory regions

[Nethercote’04]
— MemCheck: AddrCheck + check uninitialized values

» Copying partially uninitialized structures is not an error
» Lazy error detection to avoid many false positives

» Track propagation of uninitialized values
[Nethercote & Seward ‘03 ‘07]

— TaintCheck: detect overwrite-based security exploits
» Tainted data: data from network or disk

» Track propagation of tainted data to detect violations [NRWEGIME & Song U,

— LockSet: detect data races in parallel programs
[Savage et al.’97]

— Memsherlock: automated debugger
[Ning et al.’07]

— N-Variant: create variants of a system and examine it’s behaviour

[Cox et al.’"07]
COSEING

39

_— = = = — — — _—— e = = e, — — e T) — — L R R,

= | can’t foresee the future!

= |I'm in the early development stages, so many new challenges
will be shown in the future
— Combinational explosion
— SAT testers limitations

= The focus of this research are in the debuggers being attached
to the target program to collect internal’s information, not in the
fuzzers itself (I did just simple implementations using the
debuggers information regarding flow and internal structures)

COSEINC —

End! Really !?

Rodrigo Rubira Branco (BSDaemon)

Senior Vulnerability Researcher

Vulnerability Research Labs (VRL) — COSEINC
rodrigo _branco *noSPAM* research.coseinc.com

COSEINC

41

