
PoC ‖ GTFO;
brings that

OLD TIMEY EXPLOITATION
with a

WEIRD MACHINE JAMBOREE
and our world-famous

FUNKY FILE FLEA MARKET
not to be ironic, but because

WE LOVE THE MUSIC!

November 25, 2014

6:2 On Giving Thanks

6:3 Dolphin Emulator Internals (PPC)

6:4 TAR/PDF Polyglots

6:5 Pong Easter Eggs in VMWare

6:6 Anti-Emulation for MIPS

6:7 Cracking AngeCryption with ECB.py

6:8 PCB Reverse Engineering

6:9 Davinci Self-Extractor

6:10 Observable Metrics

6:11 Donate to Laphroaig’s 0day Charity

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Plymouth, Massachusetts:

Published at Considerable Financial Loss by the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

0, $0, £0. pocorgtfo06.pdf. Это самиздат; please copy this floppy!

1

Legal Note: Our intern has yet to forgive us for rejecting his copyright statement that repeatedly
cites the Alien Tort Claims Act of 1789, and having blown our legal budget on scotch, there’s nothing
to threaten you with in this space. You should take this opportunity to make tons of paper and
electronic copies to share with your friends.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t
deserve. Please mirror–don’t merely link!–pocorgtfo06.pdf and our other issues far and wide, so
our articles can help fight the coming robot apocalypse.

Technical Note: This issue is a polyglot with microdots that can be meaningfully interpreted
as a ZIP, a PDF, or a TAR. It is filled with easter eggs, and if you are a very good reader, you will
also hunt through it with a hex editor.

Printing Instructions: Pirate print runs of this journal are most welcome, but please do it
properly! PoC‖GTFO is to be printed duplex, then folded and stapled in the center. Print on A3
paper in Europe and Tabloid (11” x 17”) paper in Samland. Secret government labs in Canada may
use P3 (280 mm x 430 mm) if regulations demand it. The outermost sheet should be on thicker
paper to form a cover.

1 # This i s how to conver t an i s su e f o r dup lex p r i n t i n g .
sudo apt−get i n s t a l l pdfjam

3 pdfbook −−short−edge pocorgt fo06 . pdf −o pocorgt fo06−book le t . pdf

Preacherman Reverend Doctor Pastor Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Carpenter of the Samizdat Hymnary Redbeard
Funky File Formats Polyglot Ange Albertini
Minister of Spargelzeit Weights and Measures FX

2

1 Sacrament of Communion with the Weird Machines

Neighbors, please join me in reading this seventh release of the International Journal of
Proof of Concept or Get the Fuck Out, a friendly little collection of articles for ladies and
gentlemen of distinguished ability and taste in the field of software exploitation and the
worship of weird machines. If you are missing the first six issues, we the editors suggest
pirating them from the usual locations, or on paper from a neighbor who picked up a copy
of the first in Vegas, the second in São Paulo, the third in Hamburg, the fourth in Heidelberg,
or the fifth in Montréal, or the sixth in Las Vegas.

This release is dedicated to Jean Serrière, F8CW, who used his technical knowledge and
an illegal shortwave transceiver to fight against the Nazi occupation of France. His wife
Alice Serrière once, when asked “Where are the tubes?” showed occupying soldiers the leaky
pipes in their basement.

In Section 2, the Pastor reminds us that there are things that we must be thankful for,
with a parable freshly drawn from the Intertubes.

In Section 3, Fiora shares with us a collection of nifty tricks necessary to emulate modern
Nintendo Gamecube and Wii hardware both quickly and correctly. Tricks involve fancy
MMU emulation, ways to emulate PowerPC’s bl/blr calling convention without confusing
an X86 branch predictor, and subtle bugs that must be accounted for accurate floating point
emulation.

Continuing the tradition of getting Adobe to blacklist our fine journal, pocorgtfo06.pdf
is a TAR polyglot, which contains two valid PoC, as in both Pictures of Cats and Proofs of
Concept. In Section 4, Ange Albertini explains how this sleight of hand is performed.

In Section 5, Micah Elizabeth Scott shares the story of the Pong Easter Egg that hides
in VMWare and the Pride Easter Egg that hides inside that!

In Section 6, Craig Heffner shares two effective tricks for detecting that MIPS code is
running inside of an emulator. From kernel mode, he identifies special function registers that
have values distinct to Qemu. From user mode, he flushes cache just before overwriting and
then executing shellcode. Only on a real machine—with unsynchronized I and D caches—does
the older copy of the code execute.

In Section 7, Philippe Teuwen extends his coloring book scripts from PoC‖GTFO 5:3 to
exploit the AngeCryption trick that first appeared in PoC‖GTFO 3:11.

In Section 8, Joe Grand presents some tricks for reverse engineering printed circuit boards
with sand paper and a flatbed scanner.

Continuing this issue’s theme of tricks that allow or frustrate debugging and emulation,
Ryan O’Neill in Section 9 describes the internals of his Davinci self-extracting executables in
Linux. Here you’ll learn how to prevent your process from being easily debugged, sidestep-
ping LD_PRELOAD and ptrace().

In Section 10, Don A. Bailey treats us to a fine bit of Vuln Fiction, describing a frightening
Internet of All Things run by a company not so different from one that shipped a malicious
driver last month.

Finally, in Section 11 we pass around the old collection plate, because—in the immortal
words of St. Herbert—the PoC must flow!

3

2 On Giving Thanks

a Sermon for the Holidays

by Pastor Manul Laphroaig.

The turkey is ready and waiting, neighbors, and so
are the traditional arguments with loved ones around
the dinner table. But let us spend a few moments
reflecting on the few things besides the turkey and
the family that we are thankful for, the things that
shine on our sunny days and make the rainy ones pos-
sible to stand. Let us think of what keeps our worst
nightmares at bay.

A wise neighbor once said, “I value Mathematics
so highly because it leaves no place for hypocrisy and
vagueness, my two worst nightmares.” You might
think, “How are these things the worst? I can think
of a lot worse than those!” But it is so concise and
true! Imagine a world where there would be no corner
to hold against hypocrisy and vagueness, where any
statement whatsoever could be twisted and turned by
those who thrive on such twisting and turning to gain
advantage of and power over their neighbors, where
2 + 2 would indeed be, as an old Soviet joke put it,
“whatever the Party orders it to be.” Imagine a world
where no false promise could be ever taken to account
because the lying liars who gave it would fall back to
the vagueness of their words every time. This would
be a miserable world, neighbors, a nightmare world.

We get a taste of this nightmare every time poli-
tics forces its way into places that used to manage to
keep it out—merit and skill no longer matter, dem-
agogues get to run the place, sooner than later its
original creators get thrown out, and then it collapses
into mediocrity and pent-up unhappiness. Imagine
that there would be no tool that would lay better to
our hand than to that of the aggressors, that we had
nowhere to retreat and nothing to fight them with
that they could not suborn. Why fight if there is no
chance to win, ever, anywhere?

Lucky for us, in every age there are things in the
world that resist hypocrisy and vagueness, things that
create the oases where we gather and hold.

We are doubly lucky because for us Mathemat-
ics has taken physical form. It has clothed itself in
silicon and electricity, and now we can wield it not
only among ourselves but also show it to others who
need not understand its language, but are content
to see its results. To see just how much luckier we

are, neighbors, than the geeks of Leonardo da Vinci’s
times, just read his resume that he sent to the ruler of
Milan. To support himself while exploring the nifti-
ness and awesomeness of nature and math, he had
few other options than promising to construct supe-
rior war machines. We are damn lucky, neighbors,
that we can build machines that deliver better pri-
vacy rather than better war if we so choose!

No sooner did I write this, neighbors, than real
lifeTM provided a case study, as if on cue. Tor is run
by evil scientists in the pay of the government! News
around the clock, on this website only! Ominous geek
conspiracy unmasked!

Tor, as you already know if you read its About

page, was originally funded as a US Navy research
project, and is still occasionally funded by some clue-
ful parts of the US government that care about people
getting news and other info that their governments
happen to not approve of. Given that this sermon
got to you neighbors by traveling for at least some
of its path along a series of tubes ordered by another
US military research agency, it is not surprising that
such clue still exists; let’s hope that it persists, neigh-
bors, as we sure could use more of it, the way things
are generally going in those quarters these days.

Thanks to this clue, and also to the selfless ded-
ication of Tor developers who made this project go
the way few government-funded projects ever do, we
have the Internet-scale equivalent of a Large Hadron
Collider for low-latency onion routing. Unlike the
LHC, this experiment is not just open to the pub-
lic, but also immediately useful. Which is where the
“revelations” come in: are “evil scientists” tricking the
public?

Luckily, Tor is science, and totally open science at
that—the best kind that hides nothing. It requires no
permission or special access to be attacked in the only
meaningful way that scientific claims are questioned
and their subject-matter is improved—by experiment.
Indeed, many good neighbors did so and helped im-
prove it—and you should read their papers, because
their work is nifty1. And when you hear someone
attack open science not with experiments or calcula-
tions but with FUD about money or attitude, either

1Especially because it’s all open-access. Please enjoy the Freehaven Selected Papers in Anonymity.
http://www.freehaven.net/anonbib/

4

that someone doesn’t understand how science works,
or has another angle.

There’s a bar analogy for everything in life (it’s
a more fun cousin of the car analogy), so here’s one
for how this hustle works. Imagine that someone is
loudly embarrassing himself and annoying neighbors
in a bar with a foolish story. Being good neighbors,
wouldn’t you be moved to step in (hey, it’s a bar and

a good deed!) and gently correct him? Except, you
discover that the bar has a hefty cover charge, and
the loud silliness is actually quite profitable.

That’s one bar it’s good to pass, neighbors, be-
cause it’s not in the business of enriching minds with
good stories while cheering hearts up with a hearty
drink. All it’s serving is the poisoned Kool-aid of
clickbait.

A clickbait purveyor2 who happened to read the
About section of the Tor website must have thought
he struck a mother lode. An “evil scientist” story with
a garnish of government conspiracy—what a clickbait
oil well!

The “evil scientists” trope is a like perpetual mo-
tion machine for clickbait. Scientists aren’t the most
glib and suave communicators to begin with; they
tend to become annoyed when bullshit is heaped upon
them, letting their annoyance show. This in turn
is clear proof that they are evil and holding some-
thing back! Quick, attack them again, and spare no
personal detail, because there are hundreds of ways
that the geeks are geeky, and for each one there are
some folks that will be persuaded that geeks can’t be
trusted because of it.

The point of all this noisy commotion, neighbors,
is to make the public forget that science and technol-
ogy are in the business of making things that can be
judged on their own, regardless of their creators’ or
detractors’ motives, personalities, employers or lack
thereof, or in fact any other circumstances where
FUD, vagueness, and hypocrisy may be brought to
bear. A scientific artifact stands on its own, the same
way a formula is either correct or meaningless, regard-
less of whose hand wrote it. Trying to guess what di-
rected that hand is worse than pointless if the point
is to know if we should put our trust in the artifact—
because good motives don’t make good science, and
suspecting the scientist of a conspiracy adds precisely
zero bits of information, and clouds thinking.

Over what criteria should one evaluate Tor, then?

As one should any other engineered artifact: whether
it does what it says on the label, whether it does
anything not specified on the label, and whether the
operating conditions under which it can successfully
function are present. Are the operators of the nodes
that make up your Tor circuit actually independent
and uncompromised, or are Sibyl attacks an impor-
tant concern—and from whom? Is there enough mu-
tual information between packets entering and exiting
Tor to deanonymize users—and from what perspec-
tive on the network is that information available?

In clickbait, you will not find these questions
asked, much less their answers. Not sure whether an
article’s clickbait or not? Try suggesting to those re-
sponsible for it what questions they could have asked.
If the answer is a wave of harassment rather than
a follow-up, congratulations, you’ve found clickbait.
Worse, you are in the land of hypocrisy and vague-
ness; get out fast.

Once we remember that, neighbors, the FUD
clouds of zero-information verbiage dissipate, and the
saving light shines through. Technology is not magic
that must be judged only by the kind of witches and
wizards who create it, tainted by evil or doom un-
beknownst to mere mortals. It is knowable and dis-
sectible, and our predecessors left us the greatest gift
of understanding that, and of approaching it just so.

If we got any further out from under the shadow of
vagueness and hypocrisy, it was thanks to that legacy
and to that principle. And so we will walk out of this
Valley of clickbait and bullshit, and we shall not fear,
because they will hold no power over us. And for this
we are thankful.

2Astronomy and astrology are not in the same business even though they both have to do with stars; so with journalism
and clickbait generation. Be kind to good journalists, neighbors! They are few and far between, and their battles with bullshit
tend to be a lot more uphill than ours.

5

3 Gekko the Dolphin

by Fiora

3.1 The Porpoise of Dolphin

Dolphin is one of the most popular emulators, supporting games and other
applications for the GameCube and Wii game consoles. Featuring a highly
optimized just-in-time (JIT) compiler and graphics unit that translates GPU
opcodes into vertices, textures, and shaders, Dolphin is able to emulate almost
all GameCube and Wii games at high speeds on a modern x86 CPU.

Instead of trying to do a detailed anatomy of the entire system, much of
which is beyond my current understanding, in this PoC‖GTFO article I’m going
to focus on some particularly evil assembly optimizations and interesting bug
fixes in the Dolphin JIT from the past two months—some large and dramatic,
others small and elegant (or horrifically hacky, depending on your perspective!)
But first, let’s do a quick overview of how Dolphin works and some of the
biggest difficulties inherent in Gamecube/Wii emulation.

Dolphin’s JIT is superficially similar to a typical PowerPC emulator, but
things are not nearly so simple as they appear. The GameCube Gekko CPU
(and the extremely similar Broadway CPU on the Wii) has a number of par-
ticularly odd features that aren’t present on a typical PowerPC.

• A “paired singles” SIMD unit, somewhat similar to 3DNow! but com-
plicated by some of PowerPC’s inherent weirdnesses with floating-point
(32 bit floats are represented as 64 bit internally, similar to x87).

• Built-in “graphics quantization” registers, which allow quantized loads
and stores based on runtime-variable parameters, up to and including the
data type to be converted to and from.

• A complex memory layout with mirrored regions and a slew of MMIO fea-
tures, including a memory-mapped FIFO usually connected to the GPU,
but which can also be repurposed for other uses by games.

• The ability to directly access—and modify—the active GPU frame buffer.

• Complex cache manipulation features, such as the ability to enable a
“locked cache” and access memory as cached or uncached.

• A floating point unit with its own very unique definition of the word
“multiply.”

Making emulation even more difficult, games tend to abuse every aspect of
the system imaginable, from the precise rounding of every floating point in-
struction to self-modifying code to behavior that isn’t even defined in IBM’s
specification for the CPU. Additionally, games typically run in supervisor mode,
giving them the ability to abuse a wide variety of features user-mode applica-
tions can’t. All of this leads to severe limits on the shortcuts Dolphin can take;
the most benign-seeming optimization often results in a slew of unintended
consequences. Dolphin can’t even reorder memory loads; an attempt to do
this resulted in a real game failing because of exception handling semantics not
being maintained.3

3Dolphin-Emu issue 5864

6

00AA AAAA 0000 0BBB 00CC CCCC 0000 0DDD
AAAAAA 6 bit code representing the quantization factor (2−32 to 231) for loads.

BBB 3 bit code representing the data type for loads (float, S8, U8, S16, or U16).
CCCCCC 6 bit code representing the quantization factor (2−32 to 231) for stores.

DDD 3 bit code representing the data type for stores (float, S8, U8, S16, or U16).

Figure 1: GQR Register Format

Yes, there are applications that require precise emulation of MMU mechanics, including post-exception
rollback. Yes, there are applications that intentionally try to execute an address of 0x00000001 to trigger a
custom exception handler, and won’t run unless this behavior is properly emulated. Yes, there are applica-
tions that modify code without properly flushing the CPU instruction cache and rely on the mere hope that
the old code will have been since replaced in the cache. And yes, there are applications that may do many
of these things with the intent of sabotaging Dolphin emulation.

Yet we still have to emulate a 729 MHz PowerPC CPU on a 2-3 GHz x86 CPU, all while trying to run
programs that may very well be trying to prevent us from doing so.

3.2 Reserved bits are really just shy

A number of games were breaking in mysterious fashion with the JIT implementation of “paired singles”
quantized loads and stores. Some crashed, while others had wildly broken lighting effects or other strange
artifacts. Yet, even upon very close inspection, the JIT implementation was nearly identical to the (order-
of-magnitude slower) interpreter implementation, which worked correctly. What could games possibly be
doing here to break the JIT?

To understand this bug, it is crucial to understand the precise layout of the Gekko CPU’s eight graphics
quantization registers (GQRs). Each quantized load and each quantized store references one of these eight
registers to act as its parameters. Figure 1 describes the format of the GQR registers.

The manual describes the other bits as being zero, but unfortunately, that isn’t quite true. They were
assumed to be zero, but the CPU never enforced this. Games could–and half a dozen games did–smuggle
flag bits through these reserved register bits. Whether this was a bug, or perhaps done for some attempt at
anti-emulation code, or even a strange sort of thread-local storage, we may never know.

The JIT’s flawed assumption caused the implementation to either read out of bounds in the quantization
array or even outright jump to an invalid function pointer. Fortunately, masking out those bits was just a
single and operation; the main cost of this glitch was days of debugging by puzzled developers.

Since resolving this issue, I’ve written hardware tests to test reserved bits in other system registers too,
which revealed all sorts of strange behavior. For example, the XER (fixed-point exception register), is laid
out as follows.

1 [SO] [OV] [CA]0 0000 0000 0000 0000 0000 0AAA AAAA

SO is the summary overflow flag, OV is the overflow flag, and CA is the carry flag, with AAAAAAA being
a 7 bit control code for string load/store instructions.

But on the Gekko, the actual bits that the CPU allowed to be set in XER were 0xE000FF7F; it apparently
supported setting the 8 bits in XER[16-23] even though it doesn’t support the associated instruction, the
string compare instruction lscbx (load string and compared byte indexed, similar to rep cmpsb on x86). I
sincerely doubt any games used those bits in XER, but one can never be quite certain of such a thing.

7

3.3 Practice your multiplication,

or you might become a GameCube CPU when you grow up!

For as long as it’s existed, Dolphin has had trouble with replays, like those in racing games (Mario Kart,
F-Zero) and fighting games (Super Smash Brothers). Emulation often desynced dramatically within seconds
of the start of a console-recorded replay, with cars flying off the racetrack or Mario tripping off the side of
the stage. The same happened in reverse, when emulator-recorded replays were transferred to a physical
console. This was particularly dramatic in the case of Mario Kart’s ghost feature, in which the game let you
play against “ghosts” recorded by the developers of the game. The ghosts would very quickly drive into a
wall, making victory quite trivial, if not very satisfying.

The source of this strange yet consistent desyncing was the way these games recorded replays. Instead of
recording the movement of the karts or characters, the games record the player’s input. This is a much more
compact representation, but unfortunately, it means the most minuscule error on playback can accumulate
until the result desyncs completely. To make replays, ghosts, and other similar features function correctly,
Dolphin’s floating point unit would have to match the Gekko’s to the last bit of rounding.

For many months the Dolphin developer Magumagu exhaustively attempted to reverse-engineer the
hardware FPU and make a software implementation. One by one, precise versions of instructions were
implemented. Among the first victims were frsqrte, approximate inverse square root, and fres, the ap-
proximate reciprocal, which were replaced with table-driven versions matching the actual Gekko hardware.
But it still wasn’t enough; replays still constantly desynced, and bizarrely, the trouble seemed to trace back
to the multiply instruction.

Some consoles do use non-IEEE floating point, like the Playstation 2; the curiosities of emulating this
could make for an article of its own. Yet the Gekko was supposedly equipped with an IEEE-compatible
floating point unit, denormals and all! How could multiplies on a GameCube give different results than on
a typical desktop PC even with identical rounding flags set?

The problem, as Magumagu discovered, traced back to exactly how the floating point unit’s internals
were implemented. A double-precision float has 53 bits of mantissa; combined with three guard bits, this
makes a 56 bit input. Accordingly, the Gekko had a 56x28 bit multiply and performed double-precision
multiplies by combining the results of two 56x28 bit multiplies. Single precision multiplies were done with
just one execution of the multiply unit.

But on the Gekko, all floating-point numbers are stored as 64 bit doubles. Single precision operations
have reduced output precision and clamp their output to 32 bit precision, but are still stored as 64 bit
doubles. Technically, according to the manual, you’re not supposed to perform single-precision operations
on double-precision values; the result is supposedly undefined. But, of course, countless games did it all over
the place, so we still have to emulate it in a way that matches the behavior of the hardware.

Most single-precision operations seemed to be fine with double-precision input; a single-precision floating-
point add, for example, seemed to be identical to performing a double-precision add and then rounding to
single-precision. But, as Magumagu discovered, multiplies were their own unique brand of bizarre: they
rounded the right hand side operand’s mantissa to 25 bits of precision (for 28 including guard bits), then
performed a 56x28 bit multiply. Note that 25 bits gives neither single nor double precision; it’s something
in between.

Fortunately, it took just four SSE instructions to perform this rounding operation for each multiply:

1 movapd xmm1, xmm0
pand xmm0, [truncate_mantissa] ; 0xFFFFFFFFF8000000

3 pand xmm1, [round_bit] ; 0x0000000008000000
paddq xmm0, xmm1

The overall performance loss was barely measurable compared to the literally dozens of games with fixed
replays or physics, ranging from Zelda: The Wind Waker to Donkey Kong Country.

As Dolphin’s primary tester, Justin Chadwick, once said, “Fiora, I hate how in your build the AI no
longer bounces off the track in Mario Kart Wii. It makes it a lot harder to win.”

8

3.4 Dolphin intentionally makes thousands of segfaults

Emulating one CPU’s virtual memory subsystem on another CPU is hard. Doing so quickly is even harder.
A direct approach would be to map one host page to each emulated page, but that’s impossible on Windows
because the Alpha AXP CPU didn’t have a “load 32 bit integer” instruction. I’m not making this up.4 The
existence of MMIO, VRAM being directly mapped into CPU memory, and mirrored sections of the memory
map certainly don’t help.

The simplest approach would be to send every load and store through software address translation, but
this proves to be fantastically slow. (Remember, we can only spend about three or four x86 cycles per
Gekko CPU cycle!) Dolphin does support a variant of this as “full MMU emulation mode,” which a few
games with particular complex memory layouts do require. But for most games, it gets away with a vastly
more elegant—or horrific—solution. Which one applies to you depends on how you feel about intentionally
triggering thousands of segfaults.

For every memory access, Dolphin first tries to perform address constant propagation—if we know which
area of memory an address is in, we can directly pass off the load or store to wherever it’s supposed to go;
usually a direct RAM access or a push to the FIFO. For the rest of the memory accesses, it shouts “YOLO”
and just goes for it, with seemingly no care for what might happen if the access isn’t to valid RAM.

But Dolphin has an ace up its sleeve: it’s replicated the rough address space layout of the Gekko CPU
in virtual memory using the operating system’s shared memory features. Yes, that’s a four gigabyte chunk
of contiguous address space, including mirrored sections. (Addresses 0x8010000 and 0x0010000 map to
the same place due to mirroring.) Sections that aren’t directly mapped to physical RAM are marked as
inaccessible.

When the “YOLO” access fails, a segfault is thrown by the operating system and caught by Dolphin’s
handler, which proceeds to backpatch the x86 code that caused the segfault to jump to a trampoline which
then redirects to the slow, safe memory access handler. Thus, only the few memory accesses that actually
go to non-RAM addresses take the slow route, while the rest are simply a mov and bswap.

This feature, called “fastmem,” isn’t at all new to Dolphin, but is nevertheless among a core reservoir of
hacks that keep Dolphin’s JIT fast. Tests suggest it provides at least a 15-20% CPU performance benefit
over runtime address range checking.

3.5 Wasting all your cache is a good way to go bankrupt

As mentioned in the previous section, a few games make sufficient use of the GameCube’s fancy MMU
features that they need to take the slow path—full MMU emulation. While address translation (which is
hopelessly unoptimized in Dolphin) is a significant cost, the greatest speed cost actually comes from the
other consequences of full MMU mode. One of these is that it must check exceptions manually after every
single memory operation, and if so, flush the register state, revert any address update that occurred in the
load, and jump to the handler. It’s all rather painful and an optimizer’s worst nightmare, as it generates
massive code bloat and places great constraints on instruction reordering and other aspects of optimization.

Because of all this, full MMU games tend to require incredible amounts of CPU power to emulate. While
a few are at least playable on a very fast PC, others aren’t so lucky. Rogue Squadron 2, for example, was
developed by Factor 5, a game developer notorious for their ability to squeeze performance never thought
possible out of consoles. In the Nintendo 64 era, they rewrote the GPU firmware to render five times more
polygons than it was ever meant to. In Rogue Squadron 2, their incredible stressing of the Gamecube has
led to a game that runs at half-speed in Dolphin on a 4 Ghz Intel Haswell CPU.

In addition, likely due to Dolphin’s incomplete MMU implementation, a number of full MMU games
simply don’t boot at all: Rogue Squadron 3, Toy Story 3, and Disney Infinity among them. Particularly in
the case of the latter, this might very well be anti-emulation code.

Profiling Rogue Squadron 2 with VTune suggested L1 instruction cache misses occurred at a rather high
rate. The cost of cache misses is hardly a new topic in the optimization world, but code cache misses tend to
be glossed over. Modern x86 CPUs have vast instruction fetch bandwidth, long pipelines to absorb fetch miss

4unzip pocorgtfo06.pdf 64k.txt

9

bubbles, and while performance can certainly be improved by reducing code size, it’s often not considered a
major factor.

Regardless of this, I figured I would see how much could be gained. I created a “far code buffer” in which
to stuff all the rarely-used generated code (like exception handling and recovery for each memory access)
instead of having it inline. Maybe this would get us a few percent of a speed increase?

With one rather simple commit, Rogue Squadron 2 sped up over 30% on my Ivy Bridge. The bloating of
the generated code had cost so much that the CPU spent roughly 40% of its time sitting idle, waiting for new
instructions to come in. The gain was even larger—over 50%—on another developer’s Haswell, most likely
because the Haswell has even higher instructions per clock-cycle count, and is thus even more susceptible to
being front-end bound. Even in POV-Ray, a heavily floating-point-bound benchmark that doesn’t use the
MMU and was hardly known for its binary size, the gain was roughly 6% overall.

Never underestimate the value of instruction cache on modern CPUs. With a Haswell’s four ALUs, two
load units, and one store unit, it might very well be able to chew through instructions much, much faster
than you can feed it.

3.6 It’s normally abnormal for denormals to renormalize

I mentioned previously how the Gekko CPU internally stores all its floats—even 32 bit ones—as 64 bit doubles.
This means that Dolphin has to convert floats to 64 bit on load, and convert back to 32 bit on store, at least
if the lfs (load float single) and stfs (store float single) instructions are used. Hypothetically, if a value
was loaded immediately and then stored, an optimizing recompiler could remove the conversion, but this
can only sometimes be proven safely.

This wouldn’t be an issue normally, outside of the small speed cost of a single extra conversion operation
on each load and store. But unfortunately, yet again, games are not so kind. A strangely large number of
games use lfs and stfs to copy integer data, which means the conversion process of float-to-double-to-float
must be lossless, regardless of input. This would normally work, but at the same time, a large number
of games also set the flush-to-zero (FTZ) floating point flag, which causes denormal floating point results
to be set to zero by the CPU. Unfortunately, this also applies to our float-to-double and double-to-float
conversions, so any game copying integer data that happens to look like a denormal float will have its data
corrupted.

We can’t turn off FTZ, because that would result in floating point arithmetic errors of the same sort
that motivated the multiplication rounding changes mentioned previously. We also can’t toggle FTZ off
then back on again; the floating point control registers on x86 take upwards of fifty cycles to modify. The
initial solution was to set rounding flags for SSE2, then do the load/store conversions using x87 (which,
conveniently, doesn’t even support FTZ). The one tricky part was fixing up the NaN flags afterward, as x87
handles NaN differently from SSE2, setting an exception flag instead. This is what the double-to-float code
looked like.

movsd [temp64] , xmm0
2 movsd xmm1, xmm0

fld [temp64]
4 ptest xmm1, [double_exponent] ; 0x7FF0000000000000

fstp [temp32]
6 movss xmm0, [temp32]

jnc .dont_reset_qnan_bit
8 pandn xmm1, [double_qnan_bit] ; 0x0008000000000000

psrlq xmm1, 29
10 vpandn xmm0, xmm1, xmm0

.dont_reset_qnan_bit :

This is better than fifty cycles per load and store, but it’s still inefficient and gross enough to make x86
assembly writers everywhere squirm in discomfort. The overall speed penalty was around 20% on Super

10

Smash Brothers Melee—but there was little choice, since the alternative was inaccurate emulation that broke
many games.

Fortunately, there is one other way. What if we just checked for denormals, passed them off to a slow,
rarely-taken code path, and sent everything else through SSE? This has the bonus effect of not needing to
fix up the NaN bit, since only denormals (not NaNs) would take the x87 path. The resulting code looks like
the following.

1 movq rax , xmm0
shr rax , 55

3 sub al , 0x6D
cmp al , 3

5 jbe . x87conve r s i on
cvtsd2ss xmm0, xmm0

7 jmp . c on t i nue
movsd [temp64] , xmm0

9 f ld [temp64]
fstp [temp32]

11 movss xmm0, [temp64]
. c on t i nue :

The comparison at the top is a bit tricky and designed to minimize code size, since this code will be
duplicated countless times throughout generated JIT code. The only actual exponents that need to take
the slow path are those in the range [0x369, 0x380], but sending a few more to minimize the size of the
comparison has negligible effect on performance (in this case, [0x368, 0x387]). The comparison could be
simpler if zeroes are also sent to the slow path, but testing shows that there’s a very large proportion of
zeroes—as many as a third of the inputs. With the check shown here, only 0.01% of floats take the slow path
and the overall performance penalty for this change drops from 20% to 2%.

As a side note, the official IBM manual claims that the Gekko/Broadway CPU uses denormals-are-zero
(DAZ) in addition to FTZ when the non-IEEE (NI) flag is set. Curiously, actual hardware testing shows
that the CPU doesn’t ever seem to actually do this.

3.7 Hey I just RET you, and this is crazy,

but here’s my address, so CALL me maybe?

Modern x86 CPUs typically have a built-in return stack, designed to predict where a ret instruction is
heading, with the assumption that every call is paired with exactly one ret. This is a pretty good assumption,
and in the rare cases where it fails, the performance cost is typically equivalent to a branch misprediction.
Without this prediction, a return would be relatively costly and difficult to predict—little different from an
indirect branch jmp [rsp] or similar.

PowerPC has its own similar call and return instructions: ⁀bl (branch with link) and blr (branch to link
register). The first jumps to a location and stores the old location in the link register (the return address),
while the latter jumps to the location stored in the link register. When emulating blr, Dolphin treats it
as an indirect jump to the link register. This is the natural translation for such an instruction, but it is
costly from a branch misprediction standpoint, since such a branch is extremely difficult to predict correctly.
Profiling shows a non-trivial number of micro-ops lost to branch mispredictions.

Comex’s idea was to re-use the CPU’s existing return prediction stack. On a bl instruction, instead of
jumping to the target function, he would push the emulated destination address onto the stack and then
call the target JIT’d function. When emulating a blr instruction, instead of jumping to the given link
register, he compares the link register against the one stored on the stack at [rsp+8], and if the two match,
returns with ret. If functions call and return as expected, this approach should give near-perfect branch
prediction. Despite the seeming increase in instruction count, this led to roughly an eight percent overall
speed increase across nearly every game merely from improved return prediction.

The one danger of this is the possibility of the stack overflowing. If a game uses bl without an associated
blr, the return stack will continually grow until Dolphin crashes. Comex’s first solution was to clear the

11

stack whenever a misprediction occurred; this reduces the problem to the pure evil case of an application
that used bl hundreds of thousands of times in a row without any blr. Out of curiosity and being a bit
pedantic about correctness, he decided to support this case as well, writing a short test case that triggered
the problem and setting up guard pages and extending the signal handler to catch any failure.

The core concept of this optimization is not too different from fastmem. Hijack a hardware CPU feature
(in that case, memory protection, in this case, return address prediction) and use it to help emulate the
same feature of the target CPU, even if it wasn’t really intended for that purpose.

3.8 Through the SUBFIC and the SRAW we carry on

Like x86, PowerPC has a number of instructions that set flags based on their result. Unlike x86, there are
two ways in which this can happen. There’s condition flags (GT, LT, EQ, SO) which can be set by a comparison
operation or an arithmetic instruction with the Rc bit set. This is a lot more convenient than x86, because
one can generally avoid clobbering the flags when they’re not needed, which makes code more efficient and,
coincidentally, emulation easier.

Carry flags, on the other hand, are not quite so friendly. Some common instructions set carry uncon-
ditionally (subfic, sraw, srawi), enough so that carry calculation becomes a significant cost even in code
that doesn’t make heavy use of carry bits. The calculation of carry bits for sraw and srawi in particular is
a bit non-trivial, easily requiring a half-dozen or so extra instructions on x86 to emulate.

The first step to optimizing carries was to enhance PPCAnalyst, the class that performs dependency
analysis on instructions. If an instruction calculates a carry bit, but that bit is overwritten before being used
or before reaching a JIT block exit, we can omit the calculation of that carry bit entirely.

PPCAnalyst also has an instruction reordering pass that uses dependency information to reorder instruc-
tions wherever it can be sure doing so is safe. This was originally just used to move comparison instructions
next to branches so the two can be merged, but it can be extended to support a wide variety of operations.

I modified the instruction reordering pass to attempt to “stick” pairs of carry-using instructions next
to each other. A large number of common PPC idioms use sequences such as subc+subfe; not merely
arithmetic on variables larger than the register size. One example is r0 = (r1 != r2).

subf r3 , r1 , r2
2 addic r0 , r3 , −1

subfe r0 , r0 , r3

The PowerPC Compiler Writer’s Guide lists a number of these in the appendix.5

The third and final step was to take advantage of this; if the next instruction is going to consume the
carry bit, take advantage of the x86 carry flag instead of storing the carry bit in the emulated CPU state.
This is a slightly tricky (and limited) optimization, since it requires the instructions to follow each other
directly, since most instructions will clobber the x86 flags.

Combined with the “sticky” reordering, these changes were able to drastically reduce instruction count
in carry-heavy code; some recompiled sequences dropped in size by a factor of two or more. Some games,
such as Virtual Console games (an emulator inside an emulator!) went as much as 12% faster just with these
carry optimizations.

An interesting future optimization might be to recognize some of the aforementioned multi-instruction
compiler idioms and transform them into equivalent idiomatic x86 code; this could be even better than
merely optimizing the individual instructions!

3.9 Capturing performance from the flags

As mentioned in the previous section, many integer operations, such as comparisons and operations with
the Rc (record) bit set, have the ability to set result flags in the PowerPC condition register. The condition

5https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256996007558C6

12

register is split into eight 4 bit sections, each of which represents one result, consisting of the LT, GT, EQ, and
SO flags. This is in sharp contrast to x86, for which most instructions set flags unconditionally. It only has
a single condition flags register instead of eight.

Emulating operations on these flags efficiently is critical to performance in Dolphin. It’s often difficult
to prove that an update to the flags register won’t be used again following its most immediate use (e.g. a
conditional branch), so the relevant calculations can’t be omitted.

Delroth and Calc84maniac discovered a brilliant way to optimize Dolphin’s internal flag representation
to minimize the work required to set and read flag bits. These two operations represent the vast majority
of operations on flags; everything else, such as boolean operations between flag bits and reading out the
flags register, is practically a rounding error by comparison. In addition, reading out flag bits is done almost
entirely by conditional branch operations.

The flag representation they invented involves the flags being stored as a 64 bit integer. Bit 63 is equal
to !GT, bit 62 equal to LT, bit 61 equal to SO (a flag not fully emulated by Dolphin, but also rarely used
except as the output of a boolean flag operation), bit 32 always set, and bits 0-31 set to zero if EQ.

This representation has the useful property that it can be calculated using a single instruction from the
result of any integer operation; a 32− >64 bit sign extend (movsxd on x86_64). Individual flags can also be
read out with single operations:

1 GT = (s64)CR > 0
LT = CR & (1 << 62)

3 EQ = (s32)CR == 0
SO = CR & (1 << 61)

While this dramatically complicated operations such as loading the flags register, the overall performance
effect was tremendous. Performance improvements in typical games ranged from six to fourteen percent
merely from being able to omit most of the instructions (and code bloat) involved in flag calculation. This
change also inspired later optimizations, like splitting carry bits into their own emulated register instead of
storing them in XER. There’s no requirement that an emulator maintain the same data representations the
ISA describes, so long as it transparently performs whatever conversions are necessary for correct emulation.

3.10 With Dolphin, Wii have a bright future

Dolphin still has a long way to go. The graphics engine is imperfect and still missing a few rather difficult
features, like zfreeze and OpenGL line-width support. Dual-core mode is still sometimes a bit finicky with
timing-sensitive games. GPU to CPU data transfer can be a speed issue, as well as vertex loading for
geometry-heavy games. There are still many driver issues, like the long compilation times for shaders, that
cause unwanted stutter and slowness.

The HLE audio engine is good but not perfect, with some games still requiring low-level emulation to
avoid glitches. Countless minor bugs, from subtle depth buffer issues to issues with non-normal floating
point numbers and console glitches not being reproducible in Dolphin, still exist. On the CPU side, even
with many optimizations, some games are still slow, and a few still don’t even boot properly.

But improvements like these are a start. Already, many games that were far too slow to be playable on
all but the fastest overclocked Haswell CPUs are accessible to a much wider audience. And while Dolphin is
not and probably never will be a perfectly cycle-accurate emulator (in fact, because of DVD read times and
NAND write times, no two physical consoles will even produce identical results!), it may now be accurate
enough to create at least some console-verifiable replays and speed runs.

Figure 2 gives some examples of the performance improvements, measured on a variety of synthetic
benchmarks and games known for being performance-intensive, between revision 2301 (late July of 2014)
and revision 3378 (late September of 2014), as measured on my Ivy Bridge CPU.

Dolphin is hardly a new project; it was open-sourced six years ago and developed as a closed-source
project for many years before that. It’s far too easy to assume that relatively stable, mature projects don’t

13

POV-Ray 62% faster
LUA “binary trees” benchmark 48% faster
Sonic Colors 39% faster
Rogue Leader 103% faster
F-Zero GX 110% faster
The Last Story 38% faster
Xenoblade Chronicles 40% faster

Figure 2: Dolphin Performance Improvements

have much room for improvement; as new contributors, we have to resist the urge to shy away from projects
like this, because often there are still vast gains to be had.

Thank you so much to Comex and Delroth for their part in these two months of incredible CPU emulation
performance improvements. Thanks also to Justin Chadwick (JMC4789) for his unmatched testing and bug
bisection skills across hundreds of games, as well as the monthly Dolphin progress report writeups. And
thanks to all the other devs: Ryan Houdek, Skidau, Lioncash, Shuffle2, Magumagu, Calc84maniac, Rachel
Bryk and many others, for their tireless work on the other aspects of Dolphin, bug fixes, and assistance with
the endless ignorant questions I asked on the way to learning the inner workings of Dolphin’s CPU emulation
engine.

Dolphin has been the most approachable project of any I’ve yet tried to contribute to, from the helpful
developers to the relatively clean codebase. I somehow managed to become the go-to woman for the JIT in
a mere six or so weeks, despite having never conceived before that I could ever contribute meaningfully to
an open source project.

For anyone looking to contribute, there’s an abundant supply of interesting (or terrifying, depending
on your perspective) emulation bugs just itching for someone to attack with the single-step debugger and
printf hammer. Plus, with the brand new 64 bit ARM JIT, there are countless instructions that still
need implementations—and there are certainly lots of missing optimizations for the x86 JIT too. Drop by
#dolphin-dev on Freenode or drop us a pull request—any help is always appreciated!

14

4 This TAR archive is a PDF!
(as well as a ZIP, but you are probably used to it by now)

by Ange Albertini

In this article we’ll build a TAR/PDF polyglot file with a few simple tools that you already have if you
write in TeX or LaTeX (if not, take a couple of days to learn—wouldn’t it be just spiffy to submit your very
own PoC‖GTFO piece in ready-to-go LaTeX?).

4.1 What is a TAR file?

TAR, written in the days when tape drives were the only serious form of backup, stands for TApe aRchive.
Not surprisingly, its design is tightly coupled with the mechanics of tape drives. Those drives were made by
IBM and were invented for the IBM 650, which was produced in 1953.

Accordingly, in those archives files are stored without compression, lengths and checksums are stored in
octal, and everything is 512-byte block based. Respect old age, neighbors—and remember that your own
modern technology might not survive that long.

4.2 Abusing the format

A TAR file starts with a fixed-length record of one hundred bytes, where the archived file’s original name is
stored, padded with zeros.6 We can abuse this record to store a PDF header and a dummy stream object
to cover the rest of the archive.

We’ll let pdflatex build the dummy stream object for us from a .TeX source. We just need to declare
this object (with no compression) right after the \begin{document}:

\begingroup
2 \ pd f compre s s l eve l=0\relax

\immediate\ pdfobj stream
4 f i l e { a r ch ive . ta r }

\endgroup

We then need to move the stream content so that it virtually starts at offset 0, fix the file name, and
insert a valid %PDF-1.5 signature.

After the initial hundred byte record, a TAR file contains a header checksum. We need to fix it, be-
cause unlike many other checksums, it is actually enforced. The fixing isn’t too difficult, but the format is
nevertheless rather awkward. Here is the procedure, with a python script to perform it.

1. Overwrite the checksum (at offset 0x94, 8 bytes long) with spaces.

2. Add all the unsigned bytes of the header.

3. Write this value as octal, with leading zeroes.

4. End the checksum with a NULL character at the 6-byte offset into the field.

1 OFFSET = 0x94
Wipe the checksum f i e l d with spaces .

3 for i in range (8) :
header [i + OFFSET] = " "

5
Sum a l l b y t e s o f the header to an unsigned i n t .

7 c = 0

6If the name is longer, something called a PaxHeader is used instead; we’ve come a long way since the 1950s, neighbors!

15

for i in header :
9 c += ord (i)

11 # Store the unsigned i n t in oc ta l , f o l l owed by NULL then space .
for i , j in enumerate (oct (c)) :

13 header [i + OFFSET] = j

15 header [OFFSET + 6] = "\0"
The requ i red space was a l ready there .

Now our TAR checksum is valid again, with an archived file name buffer that has been abused to contain
a valid PDF header and a stream object. Enjoy!

manul:pocorgtfo pastor$ xxd pocorgtfo06.pdf | head -n 21

0000000: 2550 4446 2d31 2e35 000a 25d4 c5d8 0a31 %PDF-1.5..%....1

0000010: 2030 206f 626a 203c 3c0a 2f4c 656e 6774 0 obj <<./Lengt

0000020: 6820 3830 3934 3732 2020 2020 0a3e 3e0a h 809472 .>>.

0000030: 7374 7265 616d 0a65 0000 0000 0000 0000 stream.e........

0000040: 0000 0000 0000 0000 0000 0000 0000 0000

0000050: 0000 0000 0000 0000 0000 0000 0000 0000

0000060: 0000 0000 3030 3030 3634 3400 3030 30300000644.0000

0000070: 3736 3400 3030 3031 3034 3000 3030 3030 764.0001040.0000

0000080: 3030 3030 3030 3000 3132 3431 3435 3637 0000000.12414567

0000090: 3137 3200 3032 3031 3631 0020 3000 0000 172.020161. 0...

00000a0: 0000 0000 0000 0000 0000 0000 0000 0000

00000b0: 0000 0000 0000 0000 0000 0000 0000 0000

00000c0: 0000 0000 0000 0000 0000 0000 0000 0000

00000d0: 0000 0000 0000 0000 0000 0000 0000 0000

00000e0: 0000 0000 0000 0000 0000 0000 0000 0000

00000f0: 0000 0000 0000 0000 0000 0000 0000 0000

0000100: 0075 7374 6172 2020 004d 616e 756c 0000 .ustar .Manul..

0000110: 0000 0000 0000 0000 0000 0000 0000 0000

0000120: 0000 0000 0000 0000 004c 6170 6872 6f61Laphroa

0000130: 6967 0000 0000 0000 0000 0000 0000 0000 ig..............

0000140: 0000 0000 0000 0000 0000 0000 0000 0000

P.S.: Sadly, that’s not all we needed to do. Just when we thought that our polyglot finally worked well
on all readers, it turned out that some further edits broke it on Preview.app, for no apparent reason, and
in a weird way. Namely, Preview.app wouldn’t display the contant width fonts in our PDF unless the PDF
signature was placed exactly at offset 0.

Choosing between our Apple readers not being able to enjoy this special issue, having to debug the
Preview.app, having to reinvent font storage, and missing our deadline, or putting the PDF signature back
at offset 0, we chose the latter. With luck, we’ll just sacrifice a single 512 byte block and one junk filename
to improve our PDF’s compatibility.

16

5 x86 Alchemy and Smuggling with Metalkit

by Micah Elizabeth Scott

Dear neighbors, today I humbly present a story of x86 alchemy and bit smuggling. It’s an MBR you can
take with you, the story of a lonely matryoshka egg, and a spark of something weird intentionally escaping
from a place where weird machines are by definition broken.

5.1 Pong test

Two or three lifetimes ago, I was an architect for the desktop USB and GPU virtualization subsystems at
VMware. Suffice to say, it was a complicated job handled by a small team of talented, dedicated, and fucking
crazy engineers. The story begins with our effort to find new engineers to hire that were just the right kind
of talented, dedicated, and crazy. We tried the usual tactics like looking for people who like the beers we
do or testing candidates on the minutiae of IEEE floating point in specific GPU configurations. When that
worked badly, we got creative. One of my coworkers made up an esoteric minimal instruction set and asked
candidates to write programs in it. This was fun for the interviewer, at least. I liked to run the programs in
my head and debug them as fast as the candidates wrote on the whiteboard.

One of my coworkers had a new plugin architecture for the part of our virtual machine runtime that
handles user input and 2D display compositing, and he suggested we use it as an interviewing tool. So
we had them play Pong. We developed a two-hour interview test where candidates wrote a plugin to play
against a trivial opponent. The virtual machine boots directly into the game in retro black & white. The
right paddle tracks the ball slowly. The left paddle is controlled by the mouse or keyboard. In the interview,
I would work through this ridiculous Rube Goldberg contraption with the candidate, giving them just barely
enough help so they’d succeed with the available time and materials. The process seemed to be quite good
at revealing the candidate’s approach toward the kind of ridiculous things we had to do on a daily basis.

To keep the difficulty level and time requirements appropriate, we needed the VM to generate very simple
and consistent screen updates. Any general purpose OS would have a time-consuming bootup process, and
the GPU commands would be littered with sporadic events that complicate the heuristics required to locate
the ball and send the right mouse movements to have the paddle follow it.

The required speed and the level of control ruled out any operating system I knew of, so I wrote my tiny
game to run on the virtual bare metal, communicating directly with the registers and command FIFO in
our virtual GPU to set up a 2D framebuffer and enqueue just the right update rectangles. We also vastly
simplified the interview problem by putting the mouse into absolute-coordinate mode using an extension
in our virtual hardware. The very first version used some bare metal support libraries that other teams
developed for automated testing of the ridiculously complicated virtual CPU, but I soon replaced those with
pieces from an open source bootloader and 32 bit x86 bare metal support library of my own.

5.2 Metalkit

This game worked well for our interview process. My library, named Metalkit, satisfied an acute personal itch
to write fiddly low-level code. I worked on my own time, hacking together dynamically generated interrupt
vector trampolines while my boyfriend hacked at repetitive monsters in World of Warcraft. At VMware, I
then forked a version of Metalkit into an open source library which would serve as public documentation
for the virtual GPU device and part of an internal unit testing framework for it. I wanted to release this
documentation with plenty of sample code. I ended up creating plenty of 3D rendering examples as a
byproduct of creating a low-level unit testing framework for our virtual GPU. When I needed an example for
the unaccelerated 2D dumb framebuffer mode, I ported my little PongOS to this library. This new version
could be open source, and very tiny.

Metalkit is optimized for creating tiny binaries. Partly it was a personal challenge, but a tiny binary is
often a teachable binary. Many a reader has had their first spark of curiosity for ELF after the inspiration
of an especially minimal or delicately obfuscated binary. It seemed didactically useful to have a tool for

17

Figure 3: VMWare Pride

18

creating bare-metal binaries that are fairly easy to compile and also where it can be easy to identify the
purpose of every byte in the file. Instead of using a large and complicated standard C library, it includes a
very minimal library that’s designed for readability, terseness, and a sense that it’s possible to understand
the whole system.

Readers who choose to study the internals of Metalkit may notice features that go to extremes in order
to avoid unnecessary or repetitive code while also allowing complex behaviors. The ISR trampolines, for
example, are tiny functions in RAM which wrap the C functions that handle each interrupt vector. These
C functions have a simple calling signature that allows a handler to access its vector number and prior
execution state as stack parameters. With the help of some macros, handler functions can inspect or write
this saved execution state to implement features like task switching. There’s a separate trampoline for each
interrupt vector, and to save space in the disk image they’re constructed in RAM during initialization by
following a repeating pattern:

60 pusha ; Save genera l−purpose regs
2 68 <32 b i t arg> push <arg> ; Ca l l hand ler (arg)

b8 <32 b i t addr> mov <addr >, %eax
4 f f d0 ca l l ∗%eax

58 pop %eax ; Remove arg from s tack
6 8b 7c 24 0c mov 12(%esp) , %edi ; Load new s tack address

8d 74 24 28 lea 40(%esp) , %es i ; Addr o f e f l a g s on o ld s tack
8 83 c7 08 add $8 , %edi ; Addr o f e f l a g s on new s tack

fd std ; Copy backwards
10 a5 movsl ; Copy e f l a g s

a5 movsl ; Copy cs
12 a5 movsl ; Copy e ip

61 popa ; Restore genera l−purpose regs
14 8b 64 24 ec mov −20(%esp) , %esp ; Switch s t a c k s

c f i ret ; Restore eip , cs , e f l a g s

In the spirit of teaching someone to fish rather than handing them a can, I thought it prudent to set the
example of teaching machines to write the repetitive code, and how the runtime initialization might perform
this task more efficiently than the compiler could. Readers accustomed to the luxuries and tragedies of
ARM or x86-64 may need to adjust their spectacles to adequately behold the 32 bit ISR template above, as
excerpted from the comments in Metalkit’s intr.c module.

The most extreme example of design economy in Metalkit is the MBR. This 512 byte header is generated
and placed with the help of a custom linker script. It includes a plausible partition table and a carefully
crafted hunk of assembly that the BIOS will splat into low RAM and run for us in 16 bit Real Mode.
For convenience and ease of use as a teaching and testing tool, I wanted a minimal and highly convenient
bootloader. It should put the CPU into 32 bit mode, load a flat binary image into RAM, set up the execution
environment, and call main(). I wanted it to be an effortless result of typing make in a project, but to also
handle loading arbitrarily large images from devices like virtual CD-ROM drives and USB disks. Oh, and
we should make it boot from GRUB too.

5.3 Boot from anything in under 512 bytes

People never use the BIOS any more. System geeks spend all this time making sure it works in every
case, but nobody really notices. A modern BIOS has a huge library of available functionality. If you’ve
ever programmed in DOS, you’ve seen BIOS interrupts.7 They’re like system calls, but with fewer rules.
Decades and decades of backward compatibility happened, all with layers of emulation so you can happily
keep calling interrupt 0x13 for WRITE DISK SECTORS without anyone but weird people like us worrying
that the data’s going to a solid state disk plugged into a hub on an xHCI USB 3.0 controller over PCIe
rather than to a hunk of spinning rust from 1980 on a 4 MHz parallel bus.

7http://www.ctyme.com/intr/cat-003.htm

19

There are a bunch of reasons not to use these routines in modern code, chiefly that they need to run
in 16 bit Real Mode, which can only address about the first megabyte of RAM. During the transition from
DOS to 32 bit operating systems, various strategies emerged for dealing with the fact that the drivers in the
PC’s BIOS only work in 16 bit mode. Usually the BIOS functionality is reimplemented entirely in the OS
for efficiency and maintainability, and this is feasible because the hardware is documented, standardized, or
interesting enough to get reverse engineered. There are exceptions for sure, like XFree86 running 16 bit VESA
BIOS video drivers in an emulator in order to run the GPU through proprietary mode switch sequences and
obtain framebuffer access.

Even a modern bootloader will pass up the chance to use the BIOS as soon as it can load its own driver.
GRUB has an MBR riddled with esoteric bug workarounds, its mission only to launch a 32 kiB or less stage2
binary from a prearranged sector on disk. The BIOS gained an unflattering reputation from decades of
buggy drivers and a penchant for claiming 640 kiB is enough RAM for anyone.

With Metalkit, we can try to move past that and see the BIOS as yet another niche where we can find
reusable gadgets. If we can stomach a switch to 16 bit Real Mode and back for each batch of sectors, we can
use the BIOS to read from the bootup disk (whatever stack of emulations that may be) into a small scratch
buffer below 640 kiB. Then, back in 32 bit Protected Mode, we shuttle that data up above 1 MB. Repeat
this enough times and we could load a whole CD-ROM into memory, 9 kiB at a time.

With the popularity these days of usermode programming and 64 bit portability it’s easy to forget entirely
that the CPU still knows how to execute 16 bit instructions. Of course, for compatibility it always starts in
16 bit mode, but typically a bootloader like GRUB will switch to 32 bit Protected Mode as soon as possible,
and nobody looks back. With the advent of UEFI, we even have a 64 bit replacement for BIOS.

You may remember that darling of the late 90s, VM86 mode. I remember such thrills from the vm86(2)

manpage when I first started monkeying with Linux. A system call to emulate 16 bit mode! In a sandbox!
Using a built-in CPU feature! It was part of Wine, part of X. Now it’s obsolete again, incompatible with
64 bit operating systems. We don’t need anything so glitzy for this job, though. Being a bootloader with
free rein of the processor’s GDT and segment descriptors, we can toggle off Protected Mode and reload
the segment registers to point them back at low memory. It can be tricky to debug code like this, but the
low-level debuggers in both VMware and Bochs let you examine the CPU state directly during these critical
mode switches.

Even our minimal and modern bootloader can’t escape all the woe and pageantry of backward compati-
bility. The first thing we do is switch on the A20 gate, which if you haven’t run across yet I would suggest you
save to look up next time you’d like to spend some meditative time crying and/or laughing into Wikipedia.

For each disk read, we prefer to use the more modern Logical Block Address (LBA) addressing mode,
where each disk sector has an index starting from zero like any sensible API would use. Of course, before
LBA, disks didn’t really have the API of a generic storage interface made from uniform and abstracted

20

512-byte sectors; they had the API of a spinning magnetic stack and wubbling electronic wand, each with
a particular shape and speed. This older form of addressing was known as Cylinder Head Sector (CHS).
Metalkit will try LBA first, since it’s necessary for newer devices like USB sticks and CD-ROMs, with CHS
as a backup so that plain floppy disks work on any BIOS.

We read 18 sectors at a time, or 9 kiB. It’s the same as one old-style magnetic track on a 1.44 MiB disk,
to minimize the impact of CHS addressing on the size of the bootloader. After the BIOS returns, we have
to do our first jump to 32 bit Protected Mode to copy that block into place:

1 ; Enter Protec ted Mode , so we can copy t h i s s e c t o r to
; memory above the 1MB boundary.

3 ;
; Note t ha t we r e s e t CS, DS, and ES,

5 ; but we don ’ t modify the s tack at a l l .

7 c l i
lgdt BIOS_PTR(bios_gdt_desc)

9 movl %cr0 , %eax
orl $1 , %eax

11 movl %eax , %cr0
ljmp $BOOT_CODE_SEG, $BIOS_PTR(copy_enter32)

13 .code32
copy_enter32 :

15 movw $BOOT_DATA_SEG, %ax
movw %ax , %ds

17 movw %ax , %es

19 ;
; Copy the b u f f e r to high memory.

21 ;

23 mov $DISK_BUFFER, %es i
mov BIOS_PTR(dest_address) , %edi

25 mov $ (DISK_BUFFER_SIZE / 4) , %ecx
rep movsl

The x86 architecture is full of features modern programmers prefer to sweep under the rug. The x86
segment registers are usually like this, vital in every DOS program but today unused aside from the inner
workings of thread-local storage, language runtimes, exception handlers, OpenGL APIs, and the like. We
may forget that these registers on x86 are actually a somewhat miraculous feat of backward-compatilogical
engineering starting with the 80286 design.

The original 8086 architecture included four 16 bit segment registers. Each one was padded out to 20
bits, functioning as a selectable base for code and data addressing calculations on a 16 bit machine that could
address a whole megabyte of RAM. In the 80286, the new Protected Mode was introduced. Instead of simple
arithmetic, the segment registers were now processed via a lookup table, the Local Descriptor Table (LDT).
This ancient hack introduced a magical quality to each segment register, remaining there inside every x86
to this day.

In this code segment, BOOT_DATA_SEG and BOOT_CODE_SEG are preprocessor macros that refer
to particular entries in descriptor tables we set up earlier in boot. In Protected Mode, these next instructions
contain some magic:

movw %ax , %ds
2 movw %ax , %es

Friends, what looks like a straightforward register-to-register mov is anything but. The guiding tenet
of Protected Mode is the fundamental right of abstraction for all segment registers. On an 8086, these
instructions would save a 16 bit value from %ax in the 16 bit registers %ds and %es. Later, during address

21

calculations, the 16 bit value in the applicable segment register would be padded with zeroes on the right
and added to the relevant offset to form a 20 bit address that could reach an entire Megabyte of physical
memory. Protected Mode was a sort of Pandora’s box. With the box open, a segment register is now just
an idea, hopelessly modern and abstract, like the exact position of an electron. Writing an index to this
register is taken as an instruction to fetch a descriptor from the named table entry, populating some internal
and almost-invisible state variables within the processor.

After the copy, we reverse this machinery to descend back down to Real Mode and grab another 18 sectors.
With Protected Mode disabled, writing 0 to %ds and %es actually just sets the offset to a 16 bit value of zero
instead of loading from the descriptor table. There is a spooky in-between state nicknamed Unreal Mode
where it’s possible to be in real-mode with values lingering in the processor’s segment descriptors that could
only have been set by Protected Mode. I had some trouble with the BIOSes I tested, but all reliably operate
their disk and USB drivers in this state.

; 2 . Disab l e Protec ted Mode
2

movl %cr0 , %eax
4 andl $ (~1) , %eax

movl %eax , %cr0
6

; 3 . Load rea l−mode segment r e g i s t e r s . (CS, DS, ES)
8

xorw %ax , %ax
10 movw %ax , %ds

movw %ax , %es
12 ljmp $0 , $BIOS_PTR(disk_copy_loop)

Memory addressing may prove to be particularly mindboggling in an environment such as this. I wrote
the bootloader to use GNU’s assembler, which knows how to switch at any point between 16 bit and 32 bit
code. But, of course, I also need to use different addressing schemes for both of these modes, and there’s no
help from the compiler on this job. I use a collection of linker script calculations and preprocessor macros to
calculate 16 bit addresses, and I let the assembler assume 32 bit memory addresses everywhere. This works
out better anyway, since GNU binutils doesn’t help much when it comes to 16 bit anything.

The actual switch between 16 bit and 32 bit code is distinct from the switch to and from Protected Mode.
In fact, the CR0 bit that enables Protected Mode really just changes this segment loading behavior. The
other features we get, like segment limits, paging, and 32 bit code, are enabled with settings in the descriptors
we load via this new flavor of segment register we get in Protected Mode. The bitness actually changes when
we perform a long jump across segments after changing the segment descriptor for %cs and friends. To
orchestrate the change, we need the processor bitness, assembler bitness, and calculated addressing to all
line up just right:

ljmp $BOOT_CODE_SEG, $BIOS_PTR(copy_enter32)
2 .code32

copy_enter32 :

With these tricks, it’s possible to load an arbitrarily large next stage into RAM and execute it. This
could be a 6 kB Pong game, a 10 MB GPU unit test, Hello World, another bootloader stage, or maybe even
an operating system kernel.

Using the BIOS for disk input and a tiny bit of display output, and including the bare minimum amount of
backward-compatibility code, this functionality just barely fits into the 512 byte MBR. We even have room
for a real partition table. In the celebration and recognition of polyglots everywhere, a GNU Multiboot
header can sneak into any free 32 bytes within the first 8 kB and conveniently allow us to boot the image
directly from GRUB as well.

22

Friends, think of Metalkit as My First 32 bit x86 Playset for Kids and Adults. I urge you, get the code
and write a round-robin thread scheduler with your teenager tonight.8

5.4 Bug hunter

In the lopsided and sometimes oppressive culture of a rising Silicon Valley juggernaut, there were some small
subversions I took pride in. I was so productive and worked so much that I often chose my own side-projects
to mix things up a little. I’d fix little personal nitpicks. I’d look for security vulnerabilities. In my last year
there, I wrote a Bluetooth stack mostly to avoid boredom.

I once spent some time to implement oldschool CGA graphics mode emulation to fix a robot game I like.
It turns out that our BIOS had already inherited code to emulate these modes on top of VGA hardware.
So the BIOS was trying to get there by telling our virtual GPU to be a VGA device in a mode that’s
almost correct. Then the BIOS flips a bit in the VGA device telling it to interpret the framebuffer in CGA’s
particular planar style. This was the missing piece. I implemented a new blitter in the emulation that
handled this case, tested Robot Odyssey and Arcade Volleyball, and proudly resolved bug #3 in our tracker:
“CGA mode does not work.”

Along the way another bug caught my eye. #62382, “We don’t have any easter eggs in our products.”
It was filed back in 2005 by a platform engineer with a healthy sense of humor. The bug gained comments
from a range of people, from a curt “whatever” and temporary erasure to eventual revival and enthusiastic
support. To me, easter eggs were more than just a cute toy. They were a way of leaving a distinctly personal
artistic signature inside something that was intended to be a faceless commodity product. It was a subversion
I was happy to play a role in, and I figured PongOS was the perfect solution this time: small enough nobody
could complain about its size if anyone noticed it at all, isolated by the same sandbox we trust other VMs
inside, and I had a very subtle strategy for storing and triggering the disk image payload.

In the pressure to satisfy increasingly convoluted backward compatibility requirements, platform engineers
thrive by strategizing around and curating maps of undefined states. We specifically leave places where
behavior is not specified by the design, leaving subtle traps to discourage developers from fouling the pristinely
undefined by becoming reliant on our current unplanned placeholder behaviors.

I looked for a way to introduce an easter egg that could be triggered intentionally but which would stay
out of the way by only appearing in a state that I decided was safely in one of these formerly unfriendly
regions. The trigger I chose was a zero-byte floppy disk image attached to a desktop VM. This normally
wouldn’t do anything useful; there is no reason to have a zero-byte image attached instead of no image at
all, and booting in this state would lead to an error message from the BIOS.

The inner workings of this egg could be obscure as well. The floppy disk emulation was a crusty piece
of code few people would touch, and most of those who cared about and understood it had a lively sense
of humor and individuality. We routinely had to monkey-patch our zoo of devices around some obscure
operating system incompatibility. I wrote a patch that, as innocently as possible, included a header file with
6 kilobytes of hexadecimal data labeled as a “default parameter buffer,” the implication being that it helped
us in emulating some obscure floppy driver compatibility mode. When reading past the end of a floppy disk
image (very different from no image at all), we would read from this default buffer. With a zero-byte disk
image, we’re reading entirely from this buffer and booting into PongOS.

Friends who worked a little farther from the metal added to each of the platform-specific user interfaces
an obscure keyboard macro that would deploy a Paschal Ovum virtual machine with a zero-byte floppy
image.

5.5 Revision

The egg would always be controversial among the small but influential group inside the company who knew
about it. Many people could have prevented it from ever shipping, and indeed to some outsiders unfamiliar

8git clone https://github.com/scanlime/metalkit

VMWare fork at http://vmware-svga.sourceforge.net/

23

with the sausage-making process inherent in software development, it could seem strange that such whimsical
code would ever make it past the strict QA processes.

But it should be apparent to any developer and obvious to any security researcher that it’s impossible
to test for the absence of a feature like this, and in reality the complex systems software we all rely on
is so fiendishly complex that it’s possible nobody completely understands even a single OS kernel. Those
who come the closest to a complete understanding tend, in my experience, to have a jaded and pessimistic
view of kernels, device drivers, and communications stacks everywhere. The most jaded and curmudgeonly
would never want us to support graphics virtualization at all, and from a purely security position they would
probably be right.

In an unfortunate but probably inevitable string of events, someone inadvertently triggered the easter
egg on a VM that normally wouldn’t have booted, then they misunderstood the outcome and posted to the
forums about a “virus.” This eventually almost got the egg pulled, but we reached a compromise: I could
keep it if I added a VMware logo to the screen.

Now I had a challenge for myself. For starters, I’d create a new binary image that’s no larger than before,
with a nice looking logo. I wanted to go further, hiding an additional easter egg in the program. By carefully
pruning down and further optimizing the code in Metalkit, I saved entire kilobytes. I used a tiny 4 bit RLE
format for storing an anti-aliased logo image, and trimmed down all the math, graphics, and PCI code as
small as possible. The details are too numerous to list, but the intrepid reader will find the bytes in the
attached disk image number few enough to comfortably reverse engineer without too much despair.

For the nested easter egg, I added an obscure state machine to the keyboard ISR, toggling a drawing
mode when it detects the sequence of scancodes that make up {’p’,’r’,’i’,’d’,’e’}. With the special
drawing mode, a new color lookup table is activated and cycled when filling each scanline. I wanted this
layer of the egg to be a representation of the hidden struggles we go through and often keep to ourselves in
our work. And perhaps it was also a subtle nod to the specific rainbow in the Apple II logo, and the love
that myself and many of my coworkers recently put into creating our first virtualization product for the Mac.

5.6 Call to remix

Within this PDF, readers will find PongOS attached in the form of an Ableton sampler preset for those
who wish to, at various octaves, test their own perception for sonic-executable synesthesia in densely packed
uncompressed x86 code.

For other uses, rest assured a few lines of your favorite snake-based language are sufficient to make the
image suitable for boot or disassembly again.

1 >>> import s t r u c t
>>> a i f f = open (" egg . a i f f " , " rb") . read ()

3 >>> f l o a t s = s t r u c t . unpack (">6710 f " , a i f f)
>>> bytes = [chr (i n t ((i + 1) ∗ 128)) for i in f l o a t s [36 : −18]]

5 >>> open (" egg . img" , "wb") . wr i t e ("" . j o i n (bytes))

7 −rw−r−−r−− 1 micah s t a f f 6656 Sep 20 00 :07 egg . img
0a710d1776f0687170b7d547c1d70354d6bba548 egg . img

With or without the enclosed, I encourage you all to express yourself in ways nobody thinks possible.
Remember the old proverb: a wise explorer learns more about television with a magnet than a couch.

24

6 Detecting MIPS Emulation

by Craig Heffner

In this article, we’ll look at some handy tricks for detecting the difference between real MIPS hardware
and the Qemu emulator. First, in Section 6.1, we’ll look at special function registers whose values in the
emulator reveal the use of Qemu. Then, in Section 6.2, we’ll intentionally run code which has a pending
overwrite in the data cache to determine whether the instruction and data caches are synchronized with one
other, as they are in Qemu but are not in real hardware. The techniques presented in this article were tested
on Qemu v2.0.1.

6.1 Detection through hardware registers

Qemu can be identified with a reasonable level of certainty by examining discrepancies in the MIPS CP0

(Coprocessor0) registers. The most obvious register to examine is the PRId (Processor ID) register, shown
in Figure 4.

+−+
2 |Company Options | Company ID | CPU ID | Rev i s ion |

+−+
4 QEMU |0 0 0 0 0 0 0 0 |0 0 0 0 0 0 0 1 |1 0 0 0 0 0 1 1 |0 0 0 0 0 0 0 0 |

+−+
6 Atheros AR7240 SoC |0 0 0 0 0 0 0 0 |0 0 0 0 0 0 0 1 |1 0 0 1 0 0 1 1 |0 1 1 1 0 1 0 0 |

+−+
8 Ralink RT3352F SoC |0 0 0 0 0 0 0 0 |0 0 0 0 0 0 0 1 |1 0 0 1 0 1 1 0 |0 1 0 0 1 1 0 0 |

+−+

Company Options Reserved for use by the manufacturer.
Company ID Uniquely identifies the manufacturer, but is set to 0 for older

processors as it was not defined in the MIPS specification.
CPU ID Identifies the specific MIPS CPU type.

(MIPS 4KC, MIPS 24K, etc)
Revision Used to specify the CPU core revision number.

Figure 4: Processor ID (PRId) Register

The PRId register can be read using the mfc0 (move from coprocessor0) instruction.

1 mfc0 $t0 , $15 ; Move CP0 r e g i s t e r 15 (PRId) in to genera l purpose r e g i s t e r $t0

Figure 4 also shows the differences between Qemu and two common system-on-chip devices that are found
in real hardware. Note in particular the differences in the Revision field. Qemu sets this field to all zeros
regardless of which MIPS core is being emulated, but most real-world systems will have this field set to a
non-zero value representing the major/minor/patch version of the MIPS core in use by that CPU.9

It is also useful to examine the Config register. Much like PRId, the Config register can be read using
the mfc0 instruction.

mfc0 $t0 , $16 ; Move CP0 r e g i s t e r 16 (Config) in to genera l purpose r e g i s t e r $t0

9Programming the MIPS32 24K Core Family, Section 2.2

25

1 +−+
| | |B| | | | |V| |

3 |M| Impl |E | AT| AR | MT |0 0 0 | I | K0 |
+−+

5 Qemu | 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 | 0 0 | 0 0 0 |0 1 1 |0 0 0 | 0 | 0 1 0 |
+−+

7 Atheros 7240 SoC : | 1 | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1 | 0 0 | 0 0 1 |0 0 1 |0 0 0 | 0 | 0 1 1 |
+−+

9 Ralink RT3352F SoC : | 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | 0 | 0 0 | 0 0 1 |0 0 1 |0 0 0 | 0 | 0 1 1 |
+−+

M 1 if there is another config register. (Config1)
Impl implementation specific.

BE 1 if the processor is big endian, 0 for little endian.
AT Specifies whether the processor supports MIPS32 (0) or MIPS64

(1 == MIPS32 address map; 2 == full address map) encoding.
AR Architecture Revision level (0 == MIPS32/64 release 1; 1 == MIPS32/64 release 2).
MT Specifies the MMU type.

0 0 0 Unused
VI Set to 1 if the L1 instruction cache uses virtual tagging.
K0 Specifies the MIPS kseg0 memory region’s caching behavior.

Figure 5: Config register

Again, we can find some general differences in register values between different CPUs, which are shown
in Figure 5. Most notably, Impl is zero in Qemu, while the Atheros and Ralink chips have this field set
to non-zero values. The PIC32 datasheet also notes that it uses these bits to store information regarding
segment caching and the SRAM bus interface.10

These register variations are generally reliable, and are particularly applicable if you expect to only run
on one particular CPU, such as an exploit for a specific target.

6.2 Detection in Linux user space

Examining CPU hardware registers requires execution in kernel mode. But, for many Linux based MIPS
devices, you may be executing from Linux user space. Here, you may simply examine /proc/cpuinfo, which
in Qemu typically looks something like the following:

1 root@qemu:~# cat /proc / cpu in fo
system type : MIPS Malta

3 p ro c e s s o r : 0
cpu model : MIPS 24Kc V0. 0 FPU V0.0

5 BogoMIPS : 2097.15
wait i n s t r u c t i o n : yes

7 microsecond t imers : yes
t l b_en t r i e s : 16

9 ext ra i n t e r r up t vec to r : yes
hardware watchpoint : yes , count : 1 , address / irw mask : [0 x0 f f 8]

11 ASEs implemented : mips16
shadow r e g i s t e r s e t s : 1

13 core : 0
VCED except i ons : not a v a i l a b l e

15 VCEI except i on s : not a v a i l a b l e

10PIC32 Reference Manual, 61113E.pdf

26

First, most real MIPS systems will set system type to reflect the SoC vendor, such as “Ralink SoC”
or “Broadcom BCM5357 chip rev 2”. It would be extremely unlikely to see MIPS Malta on a production
system.

More importantly, BogoMIPS as reported in Qemu is a reflection of the host machine’s CPU speed. 2,097
BogoMIPS would be insane for a real MIPS processor, which typically clocks in around 400MHz. More
realistic BogoMIPS values for MIPS CPUs would be in the 200-300 range.

6.3 Execution-based detection

While the above detection methods are useful, they could easily be changed or patched, either by an end
user or in future Qemu releases. A far more reliable method of detection is through the use of fundamental
architecture features that are not properly emulated by Qemu and not easily implemented.

Qemu can be reliably detected by exploiting cache incoherency, which is inherent in MIPS CPUs but
absent from Qemu.11

The MIPS cache is divided into two sections: one for instructions, and one for data. When data is written
to memory, that data is first stored in the data cache, and is eventually written back to main memory at a
later time. Instructions, as you may well guess, are cached in the instruction cache.

This is a common issue during MIPS exploitation. Let’s say that we write some shellcode to a buffer; that
shellcode is treated as data, and cached in the data cache. If we try to jump into that shellcode, however,
the CPU will go looking for it in the instruction cache; since it is not cached there, the CPU then fetches
the instructions from main memory. But the shellcode isn’t in main memory, it’s in the data cache!

This problem is typically mitigated by first flushing the data cache back to main memory before jumping
into the buffer containing the shellcode. Cache flushes can be performed explicitly in MIPS through the
synci or cache instructions, or by simply waiting a bit (e.g., sleep(1)) and letting the kernel do a cache
flush, which will typically need to happen periodically anyway.

Qemu does not even try to emulate this cache behavior, and we can use that to our advantage by
1) writing a block of code to an address in memory,
2) executing synci to make sure the code is written back from the data cache to main memory,
3) writing a second block of code to the same address in memory, and then
4) immediately jumping to the memory address.

When running on MIPS hardware, the second code block is still sitting in the data cache, and the first

block of code will be fetched from main memory and executed. However, in Qemu, since caching is not
emulated, the second code block will overwrite the first, and the second block of code will be executed.

Thus, we can execute two completely different sets of code from the same memory address; one piece of
code will be executed when running in Qemu, and the other piece of code will be executed when running on
real MIPS hardware:

1 /∗
∗ PoC code which execu te s d i f f e r e n t p i e c e s o f code from the same address

3 ∗ in Qemu vs r e a l MIPS hardware .
∗

5 ∗ On rea l MIPS hardware , main shou ld re turn 1 .
∗ In Qemu, main shou ld re turn 2 .

7 ∗
∗ Tested aga ins t Qemu 2 .0 . 1 and a Broadcom BCM5357 (MIPS 74K) SoC .

9 ∗
∗ Requires a MIPS32r2 compliant compi ler .

11 ∗/

13 #include <s td i o . h>
#include <s t d l i b . h>

15 #include <s t r i n g . h>

17 #define CODE_SIZE 8

11Linux MIPS Wiki, Qemu Processor

27

19 /∗
∗ re t1 conta ins a MIPS func t ion tha t re turns 1 .

21 ∗ re t2 conta ins a MIPS func t ion tha t re turns 2 .
∗/

23
/∗

25 ∗ Big endian
∗

27 char re t1 [CODE_SIZE] =
"\x03\xe0\x00\x08" // j r $ra

29 "\x24\x02\x00\x01 " ; // l i $v0 ,1
char re t2 [CODE_SIZE] =

31 "\x03\xe0\x00\x08" // j r $ra
"\x24\x02\x00\x02 " ; // l i $v0 ,2

33 ∗/

35 /∗ L i t t l e endian ∗/
char r e t1 [CODE_SIZE] =

37 "\x08\x00\xe0\x03" // j r $ra
"\x01\x00\x02\x24" ; // l i $v0 ,1

39 char r e t2 [CODE_SIZE] =
"\x08\x00\xe0\x03" // j r $ra

41 "\x02\x00\x02\x24" ; // l i $v0 ,2

43 int main (void) {
int (∗ s) (void) ;

45 int r e t v a l = 0 ;
char buf [CODE_SIZE] = { 0 } ;

47
/∗ The s func t i on po in t e r po in t s to buf ∗/

49 s = (void ∗) &buf ;

51 /∗ 1 . Copy re t1 in to buf (re t1 i s now in the data cache)
∗ 2 . Execute the sync i i n s t r u c t i o n to f l u s h the data cache (re t1 i s now in main memory)

53 ∗ 3 . Copy re t2 in to buf (re t2 i s now in the data cache)
∗ 4 . Ca l l the func t ion l o ca t ed in buf (shou ld f e t c h and execute re t1 from main memory)

55 ∗/
memcpy(buf , ret1 , s izeof (buf)) ;

57 asm (" sync i 0(%0)" : : " r " (buf)) ;
memcpy(buf , ret2 , s izeof (buf)) ;

59 r e t v a l = s () ;

61 p r i n t f (" r e t v a l = %d\n" , r e t v a l) ;
return r e t v a l ;

63 }

Because synci is not a privileged instruction, this method can be used in both user and kernel space.
The only downside is that synci was not introduced until MIPS32r2, so older MIPS processors don’t support
that particular instruction. Since MIPS32r2 was introduced in 2003, it’s unlikely that this will be an issue
unless you’re dealing with an older processor; in such an event, you’ll need to use some alternate method of
flushing the cache. This can be done in kernel space with the cache instruction, or in Linux user space, you
can simply replace synci with a call to sleep(1).

It’s worth noting that in theory, the second block of code (ret2) could be executed when running on real
MIPS hardware if the kernel flushed the cache behind your back in between the time that ret2 is copied into
buf and the time that you actually call into buf. However, this would be a very unlucky edge case which I
have yet to encounter in practice, provided the time between the second memcpy to buf and the call to buf

is minimized. ret1 is never executed in Qemu.

28

7 More Cryptographic Coloring Books

by Philippe Teuwen

7.1 Weird crypto

In PoC‖GTFO 5:3 we taught you kids why ECB is a weak encryption mode, as helpfully shown by the
ElectronicColoringBook.py script.12 As you may have guessed, we’ll see that in some circumstances CBC
deserves the same treatment!

Don’t worry, though! Most of the time CBC mode is fine, but sometimes weirdos like our buddy Ange
Albertini do impossibly fancy things with crypto such as AngeCryption. I wouldn’t risk offending our
PoC‖GTFO’s loyal readers by explaining AngeCryption all over again,13 but please recall that it relies on
the fact that you can decrypt plaintext to obtain ciphertext. This reverse-ciphertext encrypts back to the
original plaintext because block encryption and decryption operations can be safely exchanged.

Let’s try to reproduce the example given by Ange in his RMLL2014 presentation, available in a translated
slide deck titled “Let’s play with crypto.”

Figure 6: “If we encrypt the final result, we get our first random data, followed by our target picture.”

This example uses PNG images, so we’ll begin with two logos in PNG format and of equal width. We’ll
take those of Google and DuckDuckGo, with a small change: I removed subtle gradients from the original
PNGs so that we get large areas of the same flat color. To better illustrate the vulnerability, we need to work
on uncompressed, non-interlaced images. A tool called advpng14 takes care of flattening the PNG images
and minimizing the metadata by grouping all IDAT chunks into a single chunk.

1 $ advpng −z −0 goog l e . png
$ advpng −z −0 duckduckgo . png

Now we can construct our AngeCryption example using Ange’s PNG-in-PNG tool (Google for it with
“corkami” and “src/angecryption/PiP/PIP.py” as search terms).

$ python PIP . py goog l e . png duckduckgo . png combined . png CBC_can_fail_too

The resulting combined.png displays the Google logo and, when decrypted, displays the DuckDuckGo
logo.

12https://doegox.github.io/ElectronicColoringBook/
13See PoC‖GTFO 3:11 and its retrospectively funny quote: “We’ll use the standard AES-128 algorithm in CBC mode, which

is proven to be semantically secure when used with a random IV.”
14http://advancemame.sourceforge.net/

29

Figure 7: combined.png

Ange’s PIP.py does the opposite of what the slide proposes, just to show that it’s also possible. So, to
match the tool and the rest of the article you need to swap the ENC and DEC operations. It still remains
pure AngeCryption.

Figure 8: “If we decrypt the final result, we get our first random data, followed by our target picture”

7.2 Time to fire up ElectronicColoringBook.py

1 $ python Elect ron icCo lor ingBook . py combined . png −p4 −c255

Figure 9: combined.png as seen through ElectronicColoringBook.py.

What can we see at this point?
We recovered the Google logo but it was not encrypted, so we aren’t done yet. Still, we can see a few

artifacts compared to what we obtained with ECB on a pure bitmap. It also looks like we couldn’t recover
the correct aspect ratio either. In fact, it did get correctly recovered, but the display included extra PNG
metadata bytes, so the image got slightly skewed.

30

The artifacts in that image are due to the additional structure of the PNG format that is absent from
a plain BMP. In a PNG image, each scan line is preceded by a byte of metadata describing which filter to
apply to that line. In our case, those extra bytes are all null bytes indicating the absence of a filter. It is this
one extra byte on each line that misaligns the blocks in our image recreation and skews it. It also breaks the
uniform areas, so they are not that easy to paint over. Moreover, you can see a few blotches of gray here and
there in the white area. That’s because the image data, even when uncompressed, is still not raw pixels but
a zlib stream encapsulating some DEFLATE data that has its own metadata15 at the start of each 64 kB
block.

Rather than adding additional complexity to our script to handle each of these specific quirks, it turns
out that we can correct the misalignment due to the presence of metadata bytes by specifying a non-integer
width:

1 $ python Elect ron icCo lor ingBook . py combined . png −p4 −o3 −c255 −x 600.345

Figure 10: combined.png, fine-tuned

15See rfc1951.txt.

31

The bottom of the image is completely black, which is how ElectronicColoringBook.py represents
non-repeating blocks. That’s what we expect from CBC-encrypted data, as opposed to ECB.

7.3 The downside

Now we can get to the second half of the story, the decrypted combined.png displaying the DuckDuckGo logo.
We’ll use decrypt-PIP.py, a helper script created by PIP.py, and then apply ElectronicColoringBook.py

to the output dec-duckduckgo.png.

1 $ python decrypt−PIP . py

Figure 11: dec-duckduckgo.png

1 $ python Elect ron icCo lor ingBook . py dec−duckduckgo . png −p4 −o3 −c255 −x 600.345

Figure 12: dec-duckduckgo.png as seen through ElectronicColoringBook.py

But what is this new devilry? Oh, no! The Google logo is still visible. Is the CBC gone all evil on us, so
can’t shake it off?

32

7.4 Why, oh why?

Recall that in the CBC mode, encryption of each block depends on all the previous blocks:

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

Initialization

Vector

Figure 13: Cipher Block Chaining (CBC) mode encryption

But the Google part of the image is not the result of an encryption but of a decryption, remember? We
must account for how these blocks feed into the CBC process.

block cipher

decryption
Key

Plaintext

Ciphertext

Initialization

Vector

block cipher

decryption
Key

Plaintext

Ciphertext

block cipher

decryption
Key

Plaintext

Ciphertext

Figure 14: Cipher Block Chaining (CBC) mode decryption

Here, the ciphertext is that of the original Google image. For its image parts of constant color, we get
the same ciphertext blocks over and over.

Plaintext blocks of that series will be Pn = DecK(Cn) ⊕ Cn−1 ≡ DecK(C) ⊕ C if all ciphertext blocks
are the same.

The first plaintext block from a repetitive area depends on the previous (different) block. Thus its content
is different from the following repetitive plaintext blocks.

So CBC in decryption mode is almost as bad as ECB: decrypting n repetitive blocks will give one arbitrary
block followed by n− 1 repetitive blocks (while ECB would give n repetitive blocks). That’s why transitions
around Google letters look slightly thicker.

In principle, we could paint over CBC when used in reverse mode as easily as we painted over ECB,
but it’s actually quite difficult in our example because, as you recall, the image data of PNG format is not
merely raw pixels such as in the BMP or PNM formats.

In real life, decryption is usually used on data that previously went through encryption. Since the point
of the CBC mode is to prevent repetitions in the ciphertext, we don’t generally need to fear them, although,
theoretically, they could still happen. (By a stroke of bad luck, we might get EncK(C ⊕ P) = C to occur
for a given P for some combination of C and the key K.)

Let us recall another CBC fact: even if you only know the key but not the initialization vector (IV),
you can still decrypt combined.png almost fully. Only the first block will be wrongly decrypted, which is
not that hard to reconstruct; even if left corrupted, it won’t prevent ElectronicColoringBook.py from
revealing both images. Look back at Figure 14 to understand why.

So the upshot of our case study is that single-block encryption and decryption operations can still be
exchanged almost safely, although the chaining mode does throw some gotchas into the process.

33

7.5 Exploring other chaining modes

So what about the other chaining modes that use an IV?

The CFB mode suffers of a similar problem because, in decryption mode, the block encryption depends
only on the previous ciphertext. This previous ciphertext can be repeated under AngeCryption, so the
resulting plaintext also repeats: Pn = EncK(Cn−1)⊕ Cn ≡ EncK(C)⊕ C.

block cipher

encryption
Key

Plaintext

Initialization Vector

block cipher

encryption
Key

Plaintext

block cipher

encryption
Key

Plaintext

Ciphertext Ciphertext Ci

Figure 15: Cipher Feedback (CFB) mode decryption

The OFB mode makes a block cipher into a synchronous stream cipher and therefore doesn’t have this
issue. Encryption and decryption are just XOR with the same keystream, which only depends on the IV and
the key K: keystream1 = EncK(IV), keystreamn = EncK(keystreamn−1) and Pn = keystreamn ⊕ Cn.

block cipher

encryption
Key

Plaintext

Initialization Vector

block cipher

encryption
Key

Plaintext

block cipher

encryption
Key

Plaintext

CiphertextCiphertext Ciphertext

Figure 16: Output Feedback (OFB) mode decryption

Let’s try this out. We modify PIP.py to replace MODE_CBC by MODE_OFB and inverse the order of operations
to compute the IV. Indeed, if for CBC we computed IV = DecK(C1) ⊕ P1, for OFB we must compute
IV = DecK(C1 ⊕ P1). Then we repeat the same experiment:

1 $ python PIP_OFB. py goog l e . png duckduckgo . png combined . png OFB_AngeCryption
$ python decrypt−PIP . py

3 $ python Elect ron icCo lor ingBook . py dec−duckduckgo . png −p4 −o3 −c255 −x 600.345

34

Figure 17: dec-duckduckgo.png (OFB version) as seen through ElectronicColoringBook.py

Finally! We get a “secure” version of AngeCryption. As a bonus, unlike CBC, if you only knew the key
but not the IV, you wouldn’t be able to recover anything.

Another alternative is the CTR mode, which is pretty similar to OFB: Pn = EncK(counter++) ⊕ Cn.
The OFB initialization vector would play the role of the initial counter value: counter = DecK(C1 ⊕ P1).
And, as for OFB, knowing only the key but not the initial counter value is useless.

block cipher

encryption

Counter

f3b1...3b

Key

Ciphertext

Plaintext

block cipher

encryption
Key

Plaintext

block cipher

encryption
Key

Plaintext

Ciphertext Ciphertext

Counter

f3b1...3c

Counter

f3b1...3d

Figure 18: Counter (CTR) mode decryption

Note that both OFB and CTR have their own special limitations typical of stream ciphers: bitflipping
attacks, keystream reuse, and so on. However, none of these are an issue in this unusual use case of ours.

The PCBC (Propagating CBC) mode would work as well, because each block decryption depends on
the previous ciphertext and the previous plaintext: Pn = DecK(Cn) ⊕ Cn−1 ⊕ Pn−1. It’s not supported in
PyCrypto, however, and is not very common.

7.6 Some more PoC

Before we wrap up, I’d like to circle back to a variation of AngeCryption suggested by Gynvael Coldwind,
and so rightfully called GynCryption. GynCryption doesn’t rely on IV forgery, but rather tries to find a
key that transforms the plaintext into the ciphertext we want. For a PNG, it requires control over the first
16 bytes, but this cannot reasonably be done for an entire block. On the other hand, controlling the first 6
bytes of a JPG is enough to be able to insert a small comment section. GynCryption was originally based
on ECB, but nothing prevents us from replacing ECB by CBC, CFB, OFB, or by CTR with a null IV or
a reset counter respectively—as we’ve shown above, those are only slightly better than ECB. In this issue’s

35

polyglot archive you can find two proofs of concept, gyncryption_ofb.pdf and gyncryption_cfb.pdf that
you can decrypt into a JPG with a null IV/counter and the same key “@doegox_5f32c6e5”.

With OFB and CTR, once you have found such a key, you may be tempted to reuse it with any other
(small) PDF and JPG, and it will work because they are similar to stream ciphers: a change in a plaintext
block affects only the corresponding bits of the ciphertext, not the entire block. But remember that stream
ciphers are only secure if you don’t reuse the keystream—so don’t reuse your key for the same mode, find
another one! Otherwise a simple XOR of both files will result into the XOR of the plaintext data (and
padding), and the keystream will be entirely removed.

7.7 Conclusions

Of course, since AngeCryption and GynCryption are far more likely to be used as crypto curios rather than
as serious tools for serious situations, their security is not that crucial. Still, it is good to understand the risks
associated with non-standard uses of block cipher modes—this understanding should serve as an antidote to
their blind reuse in inappropriate contexts.

7.8 Acknowledgments

Special thanks go to Ange for his most neighborly help; without him this article would have never been
possible!

36

8 Introduction to Delayering and Reversing PCBs

by Joe Grand

Figure 19: Our example PCB in its unmodified state. If only it knew the suffering that it was about to
endure.

Figure 20: Sandpaper at work. You can see the copper of inner layer 2 starting to peek out from underneath
the top substrate.

Printed Circuit Boards (PCBs) form the physical carrier for and provide electrical pathways between
electronic components. They are created with layers of thin copper (conductive) foil laminated to insulating
(non-conductive) layers. By accessing and imaging each individual copper layer of a PCB, it is possible
to recreate the PCB layout. If the component types (and values, ideally) are known, you’ll also be able to
derive the schematic (a simplified, visual representation of the device’s electronic design) or a desired portion
thereof.

“Why bother?” you might ask. Maybe you want to understand how a particular product works, locate
specific connections on the board (like JTAG or UART), clone the design, or figure out where you can modify

37

Figure 21: The four exposed layers of our example PCB.

it to inject malicious functionality. The techniques provided in this article might not be groundbreaking to
those skilled in the hardware arts, but will serve as a resource for folks interested in meandering down the
path of PCB reverse engineering.

8.1 Delayering

The first phase of the process is to obtain an image of each layer of the target circuit board. There are
a variety of possible techniques, including low-tech, off-the-shelf solutions and those requiring expensive
equipment and skilled operators. Some methods are destructive, meaning you’ll never see your PCB again
when you’re done, and some are non-destructive, meaning the PCB will remain intact and unharmed. For
now, we’re going to focus on manual abrasion using sandpaper, which will destroy your board layer-by-layer,
but is also the simplest and most accessible.

The top and bottom of a PCB are usually coated in solder mask, a non-conductive layer that protects
the PCB from dust and oxidation and provides access to copper areas on the board that are intended to be
exposed. You’ll want to remove the solder mask so you have unobstructed access to the underlying copper.
To do so, attach the PCB to your work surface with a clamp or double-sided tape. Then, use 60 to 220 grit
sandpaper in even strokes at light pressure across the entire board. Optionally, you can put spare PCBs
of the same height as the target on either side to help maintain planar motion and even sanding pressure.
Holding the sandpaper by hand will give you the best control. If you’re prone to repetitive stress injuries, a
tool such as a Norton Sheet Sander may serve you well.

Once you’ve exposed the copper, it’s time to capture an image of the layer. If you have access to a
flatbed scanner, use that. Otherwise, a point-and-shoot camera will work. (When using a camera instead of
a scanner, be aware that you may need to rotate and lens-correct the resulting image to make it appear as
planar and true-to-form as possible.)

To access the inner layers, the process is similar to removing the solder mask. For this step, you’ll
need harder pressure and more elbow grease to deal with removing the layer of insulating substrate, a
fiberglass/epoxy weave.

Figure 19 shows the top and bottom of our example PCB in its unmodified state. This board is 4-layer,
62 mil thick, with trace widths ranging from 12 to 48 mil. Figure 20 shows PCB delayering in action. After
you’ve successfully accessed and imaged each layer of the PCB, you should end up with a sequence similar
to Figure 21.

8.2 Image processing

With your PCB layer images in hand, the next phase is to use an image processing/manipulation tool of
your choice to adjust the images, create a stack-up of the layers, and configure the opacity of each so that
you can see all copper features at once: footprints, traces, vias, and fills. Suitable programs include Adobe
Photoshop, GIMP, and Paint.NET.

38

Figure 22: Layer stack-up of our example PCB. Layer opacity was adjusted to see through the board and
arbitrary traces were colored using a flood fill.

The image processing tasks are as follows:

1. Rotate and mirror the images so they all have the same orientation. For reverse engineering purposes,
you’ll want a view of each layer as if you’re looking down at it through the top of the board. This
means that the bottom half of your image set will need to be flipped/mirrored vertically. Choose a
feature of the PCB that exists on all layers, such as a mounting hole, test point, via, or through-hole
footprint, and make sure that it’s in the same position on the board in each of the images.

2. Adjust the images so the copper features on each layer are easily distinguishable from the underlying
substrate. The exact adjustments you need to perform will vary depending on the quality of your de-
construction process and resulting images. At a minimum, you’ll want to remove unnecessary features,
adjust brightness/contrast, and desaturate to shades of grey or convert to black and white.

3. Merge the images into a single file, to create a stack-up of the layers, by placing each one on its own
layer within your image processing tool. Set the opacity of each layer to 50% as a starting point, while
leaving the bottom layer at 100%. This will let you see through the layers enough to identify the PCB
features on each. Make sure that drill holes and other through-hole features match across the entire
board surface. You may need to make small rotational or minor scaling adjustments to exactly align
the layers.

8.3 Reverse engineering

The goal of this phase is to determine how components are physically interconnected on the board by visually
following the copper, assisted by your image processing tool. If you want to make use of the information you
glean from these efforts, you may want to have a modicum of electronics knowledge.

39

Figure 23: Schematic based on the colored signals of Figure 22. This kind of visual representation is much
easier than a collection of PCB layer images.

To begin, identify the major component footprints on the board and pick a starting location on one
of them. If component part numbers are known, obtain their associated data sheets for details about the
component, its pinout, and pin functionality. Then, prepare yourself for a lot of repetition.

With your image processing tool, enable and disable the layers as needed while using a flood fill to
set the color of the desired trace and anything it’s in contact with. You’ll find yourself hopping between
the various layers and zooming in and out as you follow the trace around and through the board. Draw a
schematic as you go, adding to it each time you finish coloring a route. Keep in mind that the PCB silkscreen
often contains reference designators, part numbers, component values, and other useful information that you
can incorporate into your schematic. A board’s physical characteristics and actual layout can also be very
important aspects of the design, but we’ll ignore them for now. Repeat these steps until every trace is
accounted for.

Figure 22 shows a working view of my PCB layer stack-up with a few arbitrarily selected connections
traced and colored. Figure 23 shows the resulting schematic.

If you want to see a true master of signal tracing, watch any of Chris Tarnovsky’s chip hacking presen-
tations from Black Hat or DEFCON. For a different approach to PCB reverse engineering, take a look at
Throbscottle’s Instructable.

8.4 Next steps

As you might now be aware, the current state of PCB reverse engineering is a manual, time consuming, and
often difficult task. The obvious progression of this work is to automate as much of the process as possible.
I’ve started developing a toolkit to assist in recreating a complete schematic based on a collection of PCB
layer images. Imagine Karsten Nohl, Starbug, and Martin Schobert’s degate or Adam Laurie’s rompar, but
for circuit boards. I, for one, am excited about the possibilities.

40

9 Davinci Seal: Self-decrypting Executables

by Ryan O’Neill,

who also publishes as Elfmaster

In the pursuit of creativity and fun, I recently had the idea of creating self-protecting files. That is to say,
any type of data that you want protected from analysis, with the ability to decrypt its own content when
provided the correct key. The use cases for such a capability are debatable, but the idea is nevertheless fun,
and only took an afternoon to implement. The goal was to create a program that can transform any file
into an ELF executable whose sole purpose is protecting the file data embedded within its own body. I call
these Davinci Seals.

9.1 Protection

The output executable should be able to protect the embedded data from static analysis and resist runtime
analysis and ptrace-based debugging. An attacker should not be able to extract the content by setting
breakpoints and reading the decrypted content from memory; thus, detection of such attacks should be in
place. The executable should also be resistant to attackers modifying code or replacing anti-debug code with
NOP instructions; this can be mostly prevented by using code watermarking. There are forms of dynamic
analysis such as dynamic instrumentation with Pin, or using an IDA Emulator plugin, which Davinci does
not mitigate, but we briefly discuss viable methods for protection against them.

9.2 Example of creating a Davinci seal

1 $ cat msg . txt

3 | The sp i c e must f low |
−−−−−−−−−−−−−−−−−−−−−

5
$. / dav inc i msg . txt msg . dvs p4ssw0rd −r

7 [+] The user who execute s msg . dvs must supply password : p4ssw0rd
[+] Encoding payload data

9 [+] Encoding payload s t r u c t
[+] Bui ld ing msg program

11 [+] (Optional) u t i l s / s t r i p x ex i s t s , so us ing i t to s t r i p s e c t i o n headers o f f o f DRM arch ive
Su c c e s s f u l l y c r ea ted msg . dvs

13
∗∗ NOTE: msg . txt was transformed in to an ELF executab l e (A dav inc i s e a l) named msg . dvs

15
$ r e a d e l f − l msg . dvs

17
E l f f i l e type i s EXEC (Executable f i l e)

19 Entry po int 0x400492
There are 5 program headers , s t a r t i n g at o f f s e t 64

21
Program Headers :

23 Type Of f s e t VirtAddr PhysAddr
F i l e S i z MemSiz Flags Align

25 LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x0000000000000918 0x0000000000000918 R E 200000

27 LOAD 0x0000000000001000 0x0000000000601000 0x0000000000601000
0x0000000000800324 0x0000000000800338 RW 200000

29 NOTE 0x0000000000000158 0x0000000000400158 0x0000000000400158
0x0000000000000024 0x0000000000000024 R 4

31 GNU_EH_FRAME 0x00000000000006c0 0x00000000004006c0 0x00000000004006c0
0x000000000000007c 0x000000000000007c R 4

33 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 10

35

41

$. /msg . dvs
37 This message r e qu i r e s that you supply a key to decrypt

39 $. /msg . dvs p4ssw0rd

41 | The sp i c e must f low |
−−−−−−−−−−−−−−−−−−−−−

Voila! Our msg.txt file was transformed into msg.dvs, an ELF executable which lives and breathes only
to protect the data within it, and reveal that data when supplied the encryption key.

9.3 Implementation

9.3.1 ELF stub and payload packaging

The goal here is to transform a file containing arbitrary data into an ELF executable whose sole purpose is
to protect the data. The executable should decrypt and write the data to stdout if the proper password/key
is supplied.

Our project consists of two parts. The first is the Protector, which creates the output program from the
second, which we’ll call the Stub.

The protector program takes an input file and generates a stub executable that contains the encrypted
input file within it, as well as metadata describing the size and location of the data. The stub executable that
it generates is written mostly in C, then compiled into bytecode and stored within the protector executable.
To fully understand the protector, we must first understand the stub.

The basic principle of the stub is that it contains an encrypted file. This encrypted data must be stored
somewhere with information about it. The best way to implement this is to append the data to the data
segment of the stub executable, or even within the text segment using a reverse extension method. Both
methods are common in virus infection and executable packers, but for the sake of POC and simplicity we
will pre-allocate a fixed size within the initialized data section of the stub executable.

/∗ From dav inc i . h ∗/
2 #define KEY_BUF_LEN 256

#define MAX_PAYLOAD_SIZE ((1024 ∗ 1024) ∗ 8)
4

typedef struct payload_meta {
6 uint64_t payload_len ; /∗ Length o f the encrypted f i l e data ∗/

uint32_t keylen ; /∗ Length o f the key used to encrypt ∗/
8 uint8_t key [KEY_BUF_LEN] ; /∗ The key used to encrypt / decrypt ∗/

uint8_t data [MAX_PAYLOAD_SIZE] ; /∗ The f i l e data i t s e l f ∗/
10 } payload_meta_t ;

12 /∗ From stub . c ∗/
payload_meta_t payload __attribute__ ((s e c t i o n (" . data"))) = {0x0 } ;

Since the data and metadata will be stored in the structure above, the protector can resolve the payload

symbol to find where it needs to store the file data and key data within the stub.

1 −− I l l u s t r a t i o n o f the work f low :

3 [input f i l e (msg . txt)] /∗ The input f i l e can be anything ∗/
|

5 v
[p r o t e c t o r] /∗ This program transforms msg . t x t in to msg . e l f ∗/

7 |
v

9 [output f i l e (msg . e l f)] /∗ The output i s a compiled s tub . c , instrumented with the encrypted
input f i l e , and metadata ∗/

42

9.3.2 Anti-analysis protection

The goal is to transform an input file into an output executable that protects it. The input file is encrypt-
ed/obfuscated and embedded within an ELF executable that serves as a defensive shell. This defensive shell
will decrypt the data if supplied the correct key, and write it to standard output. If you choose, you may
tell the protector to store an obfuscated copy of the key within the binary so that it decrypts itself without
a supplied password. This offers no real protection, of course, but may still have some application.

Our defensive shell, being an executable and all, is inherently vulnerable to reverse engineering, static
analysis, and debugging (dynamic analysis) attacks. It would behoove the defending binary to have some
protection against some of these attacks. We have three protections against static analysis:

1.) The body of the input file is encrypted within the output executable, though just with weak XOR for
this proof of concept. The payload_meta_t structure is also encrypted, on top of the payload.data buffer.
If Davinci is to become more than just a proof of concept, a real cipher must be used.

2.) The section header table is stripped from the ELF executable. String tables are zeroed out, and the
symbol table is discarded.

This by itself makes the output executable far more difficult to navigate with a disassembler, since there
is no information provided about symbols or specific sections. The program headers are suitable for loading
and running a program, but without section headers, the program is more difficult to analyze, even for IDA
Pro.

Stripping the ELF section headers effectively disables any tools that rely on section headers. It is an old
and simple technique used by many neighbors.

1 −−Prevents objdump disassembly
$ objdump −D msg . dvs

3 msg . dvs : f i l e format e l f 6 4−x86−64
$

5
−−Prevents symbol lookups

7 $ r e a d e l f −s msg . dvs
$

3.) The output executable is further protected with UPX, the Ultimate Packer for eXecutables. This also
takes care of shrinking the executable from the wasteful fixed-size of our buffer.

This feature is primarily for shrinking the output executable, because the stub is by default fixed at a
large size. Initializing an 8 MB buffer in the .data section leaves room for files up to 8 MB. As mentioned
earlier, another method, such as appending to the data segment, would be a better long-term design decision
and would result in the executable growing in proportion to the input file size. For the sake of POC, we used
the method of initializing fixed space in the .data section, which allows us to focus more on the principles
and less on the implementation.

9.3.3 Anti-debugging tricks

Most debuggers, such as GDB, rely on the ptrace system call. If ptrace-based debugging can be prevented,
we eliminate the most common types of dynamic analysis tools. strace, gdb, dumping /proc/$pid/mem,
and other tricks will all break.

Anti-Ptrace Protection A process is only allowed to have one tracer. This means that we can simply
use ptrace within our stub executable, so that it traces itself, preventing any other debuggers/tracers from
attaching. If a debugger is attached before our stub calls ptrace(), then our call to ptrace() will return
-1 and we can abort the process.

43

The enable_anti_debug() function will prevent gdb and strace from analyzing our ELF executable.

/∗
2 ∗ Notice t ha t we use our own wrapper f o r the p trace s y s c a l l .

∗ This i s good p ra c t i c e to prevent LD_PRELOAD bypasses −−
4 ∗ even though our s tub i s compiled −no s t d l i b (in which case

∗ an LD_PRELOAD bypass would not work anyway) .
6 ∗/

8 stat ic long _ptrace (long request , long pid , void ∗addr , void ∗data) {
long r e t ;

10
__asm__ volat i le (

12 "mov %0, %%rd i \n"
"mov %1, %%r s i \n"

14 "mov %2, %%rdx\n"
"mov %3, %%r10 \n"

16 "mov $101 , %%rax\n"
" s y s c a l l " : : "g" (r eque s t) , "g" (pid) , "g" (addr) , "g" (data)) ;

18 asm("mov %%rax , %0" : "=r " (r e t)) ;

20 return r e t ;
}

22
void bai l_out (void) {

24 _write (1 , "The gate s o f heaven remain c l o s ed \n" , 34) ;
_k i l l (_getpid () , SIGKILL) ;

26 __exit(−1) ;
}

28
void enable_anti_debug (void) {

30 i f (_ptrace (PTRACE_TRACEME, 0 , NULL, NULL) < 0)
bai l_out () ; // i f a debugger i s a l ready a t tached we b a i l out

32 // a marker showing t ha t an a t t a c k e r didn ’ t j u s t jump over enable_anti_debug ()
data_watermark++;

34 }

Now what happens when we try to debug msg.dvs with gdb?

$ gdb −q msg . dvs
2 Reading symbols from msg . dvs . . . (no debugging symbols found) . . . done .

(gdb) run
4 S ta r t i ng program : /home/ryan/dev/ dav inc i /msg . dvs

The gate s o f heaven remain c l o s ed
6 Program terminated with s i g n a l SIGKILL , K i l l e d .

The program no longe r e x i s t s .
8 (gdb)

If an attacker wants to bypass the anti-ptrace code, there are several techniques that are commonly
used.

1. LD_PRELOAD can be used to preload a library. This loads the specified library before any others, and
any of its symbols will take precedence over subsequently loaded libraries. Attackers have used this to
preload a custom shared library with a dummy ptrace that simply returns success and does nothing.
In our stub executable we do not use dynamic linking, and therefore no shared libraries can even be
loaded. We also use a syscall wrapper for ptrace, so that even if our stub did use dynamic linking, our
calls to ptrace would not go through the PLT/GOT and therefore could not be hijacked with another
shared library call. Always use syscall wrappers in binary hardening code, and stay away from glibc.

44

2. An attacker could modify the stub’s binary code so that the enable_anti_debug() code is never called,
or simply jumped over. An attacker could also overwrite the code in enable_anti_debug() so that it
doesn’t actually do anything to prevent debugging. We use a simple form of code watermarking to try
to prevent this, which we will discuss in Section 9.3.4.

/proc/<pid>/mem Dump Protection It is a common practice for reverse engineers/attackers to dump
a hardened binary from memory. This can be done by attaching to the process and reading /proc/<pid>/mem.
If the process is already stopped, then attaching to the process isn’t necessary, and a simple read() suffices.
Fortunately, Linux has a neat syscall called prctl(), which allows us to change the characteristics of our
running programs, but must be issued by the program itself.

int p r c t l (int option , unsigned long arg2 , unsigned long arg3 ,
2 unsigned long arg4 , unsigned long arg5) ;

4 OPTION: PR_SET_DUMPABLE (s i n c e Linux 2 . 3 . 2 0)
Se t t i ng arg2 to 0

6 prevents p roce s s from dumping a CORE f i l e ,
prevents p roce s s from being attached to with ptrace , and

8 prevents p roce s s from being dumped from /proc/<pid>/mem.

The PR_SET_DUMPABLE option applies several very neat and useful anti-debugging features. We use this
to add even more resistance to ptrace, while also preventing core dumps and memory dumps of our process.

/∗
2 ∗ Always implement a s y s c a l l wrapper when using s y s c a l l s f o r ant i−debugging

∗/
4 int _prct l (long option , unsigned long arg2 , unsigned long arg3 ,

unsigned long arg4 , unsigned long arg5) {
6 long r e t ;

8 __asm__ volat i le (
"mov %0, %%rd i \n"

10 "mov %1, %%r s i \n"
"mov %2, %%rdx\n"

12 "mov %3, %%r10 \n"
"mov $157 , %%rax\n"

14 " s y s c a l l \n" : : "g" (opt ion) , "g" (arg2) , "g" (arg3) ,
"g" (arg4) , "g" (arg5)) ;

16 asm("mov %%rax , %0" : "=r " (r e t)) ;
return (int) r e t ;

18 }

20 /∗
∗ Simply c a l l _prct l (PR_SET_DUMPABLE, 0 , 0 , 0 , 0) from your code .

22 ∗ (I d e a l l y from a g l i b c cons t ruc tor)
∗/

24
void anti_debug_dump(void) __attribute__ ((con s t ruc to r)) ;

26
void anti_debug_dump(void) {

28 _prct l (PR_SET_DUMPABLE, 0 , 0 , 0 , 0) ;
}

SIGTRAP Detection When breaking binaries, the attacker generally will set breakpoints in specific
areas of the code. With SIGTRAP detection we can detect breakpoints, as they generate a SIGTRAP signal.
Upon detection we can do whatever we like, ideally bail out and kill the program.

45

This can be done by creating a signal handler for SIGTRAP. If our signal handler catches the signal, then
it means there is no debugger attached. Since our stub is not linked to libc in any way, we must use our
own syscall wrapper for sigaction. Thanks to Jpanic for pointing out important caveats that must be
considered when doing this.

1 #define SA_RESTORER 0x04000000

3 /∗ s t r u c t s i g a c t i o n act . sa_res torer must po in t to a handler
∗ t ha t performs an r t_s i g re turn (0)−− normal ly t h i s i s done

5 ∗ by g l i b c .
∗/

7 int _sigreturn (unsigned long unused) {
unsigned long r e t ;

9 __asm__ volat i le (
"mov %0, %%rd i \n"

11 "mov $15 , %%rax\n"
" s y s c a l l " : : "g" (unused)) ;

13 __asm__("mov %%rax , %0" : "=r " (r e t)) ;
return (int) r e t ;

15 }

17 /∗ We increment trap_count i f we caught the s i g n a l ∗/
int trap_count = 0 ;

19
void s i g c a t ch (int s i g) {

21 trap_count++;
}

23
/∗ This func t i on s e t s up a s i g n a l handler f o r SIGTRAP

25 ∗ i f a debugger caught i t .
∗/

27
void i n s ta l l_trap_hand le r (void) {

29 struct s i g a c t i o n act , o ldac t ;
act . sa_handler = s i g c a t ch ;

31 act . sa_f lags = SA_RESTORER;
act . s a_re s to r e r = r e s t o r e ;

33 s igemptyset (&act . sa_mask) ;
s i g adds e t (&act . sa_mask , SIGTRAP) ;

35 // must pass s i z e o f (long) or ke rne l re turns −EINVAL
_sigact ion (SIGTRAP, &act , NULL, s izeof (long)) ;

37
}

39
void detect_debugger (void) {

41 __asm__ (" in t3 \n"
"nop") ;

43 i f (trap_count == 0)
bai l_out () ; // debugger caught the trap , b a i l out !

45 trap_count = 0 ;
}

There exist other anti-debugging techniques not used in this example. /proc/self/status can check if
a ptrace attachment exists. Junk or misaligned assembly code could be used to obfuscate the application
against a disassembler while keeping it functionally equivalent.

Advanced reverse engineers will go well beyond the use of ptrace()-based debuggers when attempting
dynamic analysis. Such engineers might use the Pin instrumentation framework, an emulator, or ERESI’s
e2dbg.

Detection of Pin hooking can be done by checking /proc/self/maps to see whether the mapping called
[vvar] exists after [vdso]. This happens when vdso has been partially remapped by Pin.

Emulation detection can also be performed by rtdsc timestamp checking.

46

9.3.4 Code and data watermarking

To enforce our anti-debugging code so that it is not easily circumvented, we have some simple code and data
watermarking in-place. As mentioned earlier, if someone were to modify the enable_anti_debug() code,
or simply jump over it, it would be rendered useless. We must therefore be prepared to detect when this
happens and act accordingly by exiting or killing the program before it is successfully cracked.

Data Watermarking For the data watermarking, we have a static initialized variable that is set to 0 and
only incremented after the enable_anti_debug() function successfully completes. Later on, we check the
value of this variable. If it has not been incremented, then we can assume that an attacker either jumped
over the anti-debug code or NOP’d it out.

void denied (void) {
2 bai l_out () ;

}
4

void accepted (void) {
6 __asm__ __volatile__ ("nop\n") ;

}
8

_start () {
10 uint64_t a [2] , x ;

void (∗ f) () ;
12 int r e t ;

14 . . . <code> . . .

16 a [0] = (uint64_t)&denied ; // a [0] po in t s to denied () address
a [1] = (uint64_t)&accepted ; // a [1] po in t s to accepted () address

18 x = a [! (! (data_watermark))] ; // conver t data_watermark to a boolean , 0 or 1
f = (void ∗) x ; // ass i gn func t i on po in t e r to e i t h e r accepted () or denied ()

20 f () ; // c a l l accepted () or denied ()

22 . . . <code> . . .
}

As we can see by the code snippet above, if data_watermark was not incremented it will still be 0, so we
can assume that an attacker jumped over the enable_anti_debug() code. So denied() would be called,
which calls bail_out() to kill the process. Otherwise, accepted() will be called, which does nothing, and
our binary goes on running untampered.

Code Watermarking For the code watermarking, we want to validate that the enable_anti_debug()

function has not been modified in any way. We do this by simply fingerprinting it.

1 /∗ From dav inc i . h ∗/
typedef struct code_watermark {

3 uint32_t code_size ;
uint8_t code_signature [CODE_CHUNK_SIZE] ;

5 } code_watermark_t ;

7
/∗ From dav inc i . c

9 ∗ NOTE: ’ uint8_t ∗mem i s a mapping o f the s tub e x e cu t a b l e ’
∗ This code w i l l c r ea t e the f i n g e r p r i n t o f enable_anti_debug () and s t o r e

11 ∗ i t w i th in the s tub e x e cu t a b l e
∗/

13 . . . <code> . . .

15 symval = resolve_symbol (" enable_anti_debug" , mem) ;

47

symsize = resolve_symbol_size (" enable_anti_debug" , mem) ;
17 o f f s e t = t ex tO f f s e t + (symval − textVaddr) ;

code_watermark = (code_watermark_t ∗) a l l o c a (s izeof (code_watermark_t)) ;
19 memcpy((uint8_t ∗) code_watermark−>code_signature , (uint8_t ∗)&mem[o f f s e t] , symsize) ;

code_watermark−>code_size = symsize ;
21 symval = resolve_symbol ("code_watermark" , mem) ;

symsize = resolve_symbol_size ("code_watermark" , mem) ;
23 o f f s e t = dataOf f s e t + (symval − dataVaddr) ;

memcpy((void ∗)&mem[o f f s e t] , (void ∗) code_watermark , s izeof (code_watermark_t)) ;
25 . . . <code> . . .

27 /∗ From stub . c
∗ We memcmp the enable_anti_debug () func t i on with code_watermark . code_signature .

29 ∗ I f t he re are any d i sc repanc i e s , we c a l l denied () , which b a i l s out and p r i n t s the message
∗ "The ga t e s o f heaven remain c l o s ed "

31 ∗/
. . . <code> . . .

33
a [0] = (uint64_t)&accepted ;

35 a [1] = (uint64_t)&denied ;
r e t = _memcmp((uint8_t ∗) code_watermark . code_signature , (uint8_t ∗) enable_anti_debug

, code_watermark . code_size) ;
37 x = a [! (! (r e t))] ;

f = (void ∗) x ;
39 f () ;

. . . <code> . . .

9.4 Getting Davinci

The Davinci source code tarball is stored in a davinci seal itself :)

chmod +x dav inc i . tgz . dvs
2 . / dav inc i . tgz . dvs d4v1nc1 > dav inc i . tgz

ta r zxvf dav inc i . tgz

48

“For the last time, Brian,” said Barbie, “$4C is absolute
jump and $6C is indirect jump. It’s like this: $4C is me

telling you that you’re an idiot; $6C is me pointing you to a
piece of paper that says, ‘You’re an idiot.’ And what the hell

are you smiling at, Steven? You’ve got code here that overwrites
the ROM monitor. Unless your last name is Wozniak, STFO out of

$F000 block.”

49

10 Observable Metrics

fiction by Don A. Bailey

from a concept developed with Tamara L. Rhoads and Jaime Cochran

for J. O., A. S., and S. G. S.

Gold from the late November sun washed an oth-
erwise porcelain hallway, as the door to the Vice Pres-
ident of Engineering’s office opened. Stepping into
this naturally lit office, out of the antiseptic hall, was
a reminder of the perks of a hard earned career rolling
out next generation Internet of Things technology.

He stood in the center of the room, smiling an
inviting smile, while rays of light seemed to flow from
the tips of his outstretched arm. He beckoned the
engineer to sit. His raised standing-desk was ele-
gantly constructed in a nod to George Nakashima’s
signature style. Its varnished surface accentuated the
tree rings underneath through a translucent hue. The
sides of the desktop were kept natural, almost raw.
Some of the tree’s original bark still proudly masked
the unfinished growth hidden below.

To the left of the desk stood a large American
flag, whose pole rose to centimeters below the ceil-
ing. Its fabric moved slightly to the rhythm of the
office air, which was coaxed around the room by an
unseen and unheard ventilation system. The flag
seemed to be placed purposefully on this side of the
room, at the edge of the wall of windows that faced
south San Diego bay, where a battleship sat in the
distance. Tiny figures in white were noticeably scur-
rying around the flat, grey deck, in what seemed to
be a concerted effort to clean the behemoth.

She smiled as she sat down. The chair’s leather
creaked under her slim figure, as her body adjusted
to the boxy and industrial shape of the Le Corbusier-
style object.

“Thank you for joining me for a quick discussion!
I know how busy you are with the final security audit
of the new 768 product line,” the VP smiled, one arm
relaxing on the edge of his standing desk, the other
casually half-hanging from his designer jeans pocket.

Before the engineer could comment on the
progress of the current audit, the VP questioned her.
“How do you feel about the security of the new low-
power mesh module? It’s pretty robust for being able
to fit on the new product line, isn’t it?”

She paused before answering, expecting the si-
lence was only a dramatic pause before he contin-
ued on with the wireless module he designed him-
self. Even though it was yet another low-power wire-
less module, it was designed using transparent silicon,

and is able to integrate seamlessly into their new eye-
contact heads-up-display line. What was even more
impressive was the fact that he designed the module
to use a new energy harvesting method that relied
on the human eye’s restlessness, its constant micro-
movements, its tremors, to generate the small bursts
of power required to drive the transceiver. It was all
very impressive, and very heavily patented.

A new mesh protocol had to be designed, in or-
der for the extremely low-power transceiver to work
effectively. The protocol was heavily vetted from a
security perspective prior to filing the patents. Even
the company lawyers had to get involved by assisting
with the high level threat modeling process, especially
since weaknesses in this protocol could allow attack-
ers to hijack a victim’s imaging data, let alone their
vital statistics. She knew this was all done prior to
her arrival at the organization, just over a year and a
half ago. Obviously, he was looking for a little praise.

“The security architecture is excellent. I don’t
think there is anywhere that I could add value to the
project,” she smiled. She wasn’t going to drip sac-
charine words from her mouth. The truth was good
enough as a compliment.

“Excellent,” he regurgitated with his chin in the
air. “Excellent.”

He continued, “But you did find the security flaw
in our cryptographic key storage chip. That was ex-
cellent work. We needed someone with your expertise
to help find out how we’d end up hacked.”

“Yeah, but to be honest, I’m just following the
recommendations of other researchers that have done
prior work in this area. Tarnovsky, Nohl, and even
Nedospasov have given presentations on strong at-
tacks in this area. It’s really just a matter of bypass-
ing the chip’s security mesh with existing technol-
ogy that was designed for complex hardware analysis.
Not to mention, you can use similar attacks against
Physically Unclonable Functions. . . ” She realized his
eyes had glazed over, and looked sheepishly at her
feet, which were tapping nervously against the cold,
cylindrical legs of the Le Corbusier replica.

Her moment of emotional self-doubt aroused him
from his entranced state. He scoffed “Yeah, I’m sure
everybody can hack hardware like that, these days.”
Realizing his eagerness to exploit her humility was

50

obvious, he regained his composure and ran his hand
through one side of his hair and smiled. “You did
excellent work, there. I was impressed.”

She couldn’t help herself from narrowing her eyes.
She thought this was just a check-in on the status of
the mesh security architecture. But, now, she knew
he needed something else. What was bothering her
was that this typically direct, type-A male was seem-
ingly taking the round-about in arriving at the real
topic.

“So, how can I help you? I’m sure you didn’t ask
me to your office to discuss research. What’s up?”
she offered, her right foot still tapping against the
chair leg.

“I just got word this morning, entities overseas
have recreated your work. I guess I should say they’ve
independently discovered the security flaw.” The VP
leaned forward, putting the weight of his abs on the
standing desk, his thick chest pointed directly toward
her. His knuckles whitened, his hands gripped the
sides of the desk, as he leaned even further over the
desk like a reverend poised at a pulpit, ready to spit
out a sermon.

“Those sons of bitches not only have broken this
device, but they’ve broken every one of our products!
How are they doing it?!” His oddly calm voice was
chilling in contrast to the hulking position his body
took behind the pulpit-like desk. “I don’t even care
how anymore. I really don’t.”

“The clones they’ve been building of our prod-
ucts have been flooding the foreign markets for sev-
eral years.” he continued. “Our quarterly earnings
are hundreds of millions of dollars short on revenue
because of these cheap knock-off items. I don’t even
want to look some of our investors in the eye because
we can’t keep these people out of our market.”

The man moved out from behind his pulpit and
stood in the center of the room, with the rays of the
sun behind him. As he leaned in, the angle of the sun-
light caused his face to become engulfed in shadow.
He spoke so softly now that she had to lean in, mak-
ing his aggressive posture even more uncomfortable.
“It’s weak. It’s pathetic. I want it stopped”.

The young engineer was barely able to contain her
sigh of relief. “For a second there, I thought you were
going to fire me,” she half-joked.

He raised his body into a polite, standing posture
and laughed whole-heartedly, “No, no! My apologies!
You’re imperative to this organization, now! I know
how hard you’ve worked, you should have absolutely
no concerns about your performance. The fact is, I

need your advice.”

She put her hand to her chest. Her foot moved
away from the metal chair leg, where it had al-
ready began to tarnish the gleaming silver. Her eyes
widened as she humbly replied “Thank you, I really
appreciate that. Sometimes it’s a bit hard, you know,
still being ‘the new guy’ even after a year and a half
of effort.”

He picked up a white mug half filled with black
tea and emblazoned with the company logo from his
desk, and took a sip. His eyes affixed somewhere past
her, as if he were caught up in another distant con-
versation she couldn’t hear. “Don’t be ridiculous, he
replied. You’re excellent. . . ”

“Unfortunately, sir, I have to tell you what you
already know. Unbreakable security is simply impos-
sible. It’s just never going to happen. We build effec-
tive models so that arbitrary people can’t affect the
products of millions of people. But, anyone with ad-
equate funding can attack and learn about any given
system. No proprietary technology will stop some-
one from cloning or reproducing someone else’s work.
Security just can’t achieve a goal like that.”

Her eyes were light, but serious. She understood
his frustration, and even sympathized with him. He
had worked so relentlessly for so many years building
new and innovative things that leeches just flippantly
dressed in cheap 3D plastics and silk screened logos.
They had no respect for the artist behind the engi-
neering degree. They only saw a Giovanni Bellini that
was finally forgeable, because no one decaps an inte-
grated circuit to see if the eye-contact wearable device
was sculpted by the real artist, or by a second-rate
hack. They only want to flaunt the logo most recently
approved by the hip kids, and the ability to Tweet
photos of Bae with a champagne glass balanced on
her ass.

“Yeah.” He sighed. “Yeah, you’re right. I know
that better than most. We’ve lost billions in revenue
over the past few years of success. People call us a
success. We rang that bell in New York City, and it
looked like a success. The world looks at us as if we
are a success. They want to use our devices regardless
of who actually made it.”

He took a long, slow sip of his black tea. When his
lips parted from the porcelain, and the mug turned
slightly, she could see a single black bead of tea drip
lazily down its side. His disposition darkened, seem-
ingly descending as quickly as that tiny drip of tea
through the manufactured air and onto the office
floor.

51

“But fuck them. We aren’t a success. We can’t
even keep those people out of our security chips.”

He placed an elbow on his standing desk, resting
his hair in his hand. “I’m done caring about how to
solve security. It’s just a god damned cat and mouse
cycle of nonsense.” He looked her straight in the eyes.
“Nonsense!” he loudly snarled. He looked downward,
his other hand still attached to the vessel holding the
blackened liquid. He continued more calmly.

“They forge our logos. They recreate our software.
They steal our customers. We have a right to protect
ourselves. Technically, if they use our trademarks,
their devices are ours. We just didn’t make them. If
they’re ours, we have a right. We have a god damned
right to do with them as we please.”

His eyes tightened as he stood up as straight as the
flagpole next to him. “We have a god damned duty
to our employees, our investors, and our country, to
protect what’s ours. If they’re going to produce tech-
nology that they claim is ours, we have the right to
take that technology. We have a right to destroy that
technology.”

He looked over at his standing desk, and hit a key
on his laptop’s keyboard. He glanced at the screen
for a brief moment, then continued.

“I need a way to stop this nonsense. I’m sick of
worrying about someone hacking into this or hacking
into that. We need this game finished. No more cold
war bullshit with fake engineers and shell companies
overseas. I’m done. I’m fucking done. I need a way to
brick every single device that claims it’s one of ours.
If it connects to the Internet and sends a message say-
ing it’s owned by Fit’d, Inc., I want it bricked. If it
connects to a computer and identifies itself as Fit’d,
Inc., I want it bricked. If it peers with another mesh
device and claims it’s Fit’d, Inc., I want it bricked.
They’re done. These people are fucking done. And
you? You’re going to write the exploit.”

Her eyes widened again, this time in discomfort.
She understood why he seemed so unable to hold back
these worsening emotions. He was on the edge, if not
slightly beyond it.

“But, we have absolutely no way of knowing how
this will affect the end users!” Her right foot began
tapping madly again, as she leaned forward in her

chair. Her body barely hung on to the edge of her
seat, practically mirroring how his mind must be tee-
tering on its ethical edge, half ready to give itself to
the wind, leaping recklessly into the abyss. “We can’t
possibly put people’s lives at risk like that! You re-
alize how many infinite scenarios there are for people
using our technology! Think of how people are using
wearables to monitor and control their pacemakers,
their insulin pumps, their seizure reducers. . . There
are people who could die if their products are sud-
denly unable to function!”

The VP briskly walked the few steps toward the
shaken woman, with a pointed finger and furrowed
eyebrows, “These people are putting themselves at
risk by knowingly purchasing cloned technology! You
said it yourself in your security review of a third-party
clone: there was no guarantee that reproduced work
could even come close to ensuring the confidential-
ity, integrity, or availability of a consumer’s data! No
guarantee!” he barked.

“But, sir!” her body was pinned against the back
of the chair, as if forced there by a sudden atmo-
spheric microburst. “The impoverished buy these
knock-offs because they can’t afford the real thing.
There is a user base of millions in foreign countries
that depend on this technology for their basic commu-
nication needs. It isn’t about protecting our product,
our trademark, or even our corporate persona.” She
calmed down as she heard the sensible words starting
to emanate from her mouth.

“It’s about a worldwide phenomenon that this
company has created. That you’ve helped create!
People want to participate, they want to be in this
brave new world, but it’s just a fact that not everyone
can afford what we sell.”

“By arbitrarily disabling these devices you’re
widening the communication gap between the have’s
and have-not’s. Think about how clones of this com-
pany’s technology are used to connect millions of peo-
ple to the world. People in oppressive governments,
people in religiously strict societies, people without
access to broadband in their region. It’s their only
method for keeping up with worldwide evolution in
culture. You’re risking sending a large portion of the
Internet back into the technological stone age. If you
destroy these people’s tools, they’re going to have to
essentially uplink other modern mesh devices, depen-
dent on clones of our technology, to the Internet us-
ing the equivalent of ancient serial-port speeds. For
what? Ten percent of what this company makes in
revenue per quarter?”

52

The VP sat his mug down on the desk, his brow
still furrowed. Half of his hair, where one hand had
been nervously running its fingers, was sticking out
sideways, in some laughable nod to a Hollywood mad
man. The other side was eerily plastic, like some
bizarre executive Ken doll. As he turned to the
side, the rustled hair disappeared, and the words that
came out of his mouth seemed even more despica-
ble while rolling out of what seemed like a perfectly
coiffed, button-downed executive.

“If we don’t hit these companies where they hurt
the most, the end users, we won’t ever hurt them.
We need to show them that it’s their fault people are
dying. We need to prove to them that what they are
doing can hurt actual people.” He turned to face her,
his unkempt hair appearing as he further proclaimed
his righteousness. Again, he glanced back at his lap-
top, gauging something, then quickly looked away.

“These companies are risking lives as it is. They
make an inferior product that lacks the guarantees
that we can make. People will get hurt eventually,
and what if it’s in the millions? We can put a stop to
it now, and maybe only a couple thousand get hurt.
If we act today, we can potentially save millions later.
You can help me put an end to this. You can help
me save those millions of lives. You can help save this
company, if we can build the perfect remote exploit.”

His disregard for human life was somehow not
shocking to her. She wasn’t sure why. Maybe it was
always there, under the surface of his skin, hidden
behind that natural hippy-turned-professional vibe.
Maybe it was the fact that he claimed to care about
the ecosystem, posturing with the Boulder, Colorado
mindset, while driving a gas guzzling Porsche, and
flying in a private jet whose pollution costs were off-
set by carbon credits. She didn’t know why it made
sense. It just did.

It wasn’t shocking, but it was terrifying to her.
Even if she quit, if he was this far gone, how could she
trust him not to hurt her? Did anyone else even know
about this? Was she the only one he told? Would he
hurt her to keep this psychotic rant from going be-
yond these walls? Was this a test? It sure as hell
didn’t feel like a test. It felt real. It felt dangerous.

Suddenly, a pop-up appeared in her line of vision.
Her own eye-contact heads-up-display was notifying
her that she was perspiring and had an elevated heart
rate, but didn’t seem to be moving in any particular
direction. “Are you feeling okay?” the artificial intel-
ligence asked in a little text pop-up box, as her fit-
ness statistics hovered in little graphic-user-interface

clouds throughout her field of vision. “I can sense
that you seem to be running, but our movement mesh
shows you aren’t moving. Would you like to recali-
brate?”

The intrusion of these observable metrics into this
ridiculously cartoonish scenario simply furthered her
disbelief that any of this was actually happening.
This began to seem more and more like a bizarre
and belated Halloween prank. As her heart thumped
louder and louder, she couldn’t help but break into a
humiliatingly inappropriate grin. Was he crazy? Was
she? Was any of this happening?

The eye-contact queried again: “Would you like
to recalibrate?”

“Yes, this is real.” he stated with an absurd calm
that sent chills down her spine. He instantly seemed
more in control than ever. He was almost gloating!
Whatever he kept glancing at on his laptop screen
was reassuring him. “This is very real.”

“How did you know that’s what I was thinking?!
You’re putting me through some kind of fucked up
joke, right? Some kind of loyalty test? This isn’t
funny. I don’t think it’s funny.” She tried to gather
herself. She stood up, but seemed frozen by his lack
of reaction. “I quit. I have to quit. Even if this is a
joke or a test, it’s too fucked up. I can’t. . . ”

“You can’t?” he said. He grabbed his standing
desk and twisted it back, flattening the desktop sur-
face before hitting a switch with his foot that enabled
the surface to be lowered, then loudly slammed the
desk down into its sitting position. The shotgun-like
boom of the thick, flat, cherry wood smacking more
thick flat wood was unbearable! He slowly wheeled
the desk over to the center of the room, in front of
a setting San Diego sun. “You can’t what? Change
the world? You’re afraid of the cost of change. I get
it. It takes a lot of bravery to do what we do here, to
make real, tangible change. Sometimes, that cost is
unthinkable. But, we do it, because we can aff. . . .”

“Because you fucking can!” she exclaimed, infu-
riated by his sudden calm. “Say it! Because you
fucking can! Knock it off with the perpetual rhetoric
nonsense! You do it because you fucking can!” Tears
began to well up in her eyes, still waiting for the rest
of the executive team to burst through the doorway
exclaiming this horrible test of will and ethics was
over.

The sun finally lowered over the late afternoon
horizon, sending a green flash, and pink hues barrel-
ing into the suddenly quiet office room. The flat gray
surface of the battleship was devoid of little men in

53

white. The barrel of the turret they were polishing
earlier now seemed to be pointed in her direction.
Was it pointing this way earlier? She couldn’t re-
member. It must have been.

She felt her temperature rising, even with the sun
disappearing. Her HUD popped up another little text
box into her field of vision exclaiming that her core
temperature has elevated to 99 degrees Fahrenheit.
She wanted desperately to run out of the office. But
where would she go? And would the guards at the
building exits stop her? Or would there be little men
in white to cleanse this building of her presence?

“If you run, that will be a big problem for you,”
he smirked. “Please, sit back down. We have much
to discuss.”

“How the fuck?” Suddenly, she saw it. He wasn’t
glancing at instant messages. It wasn’t stock prices
he had been monitoring throughout the discussion.
As the sun set, the world outside darkened almost in
parallel with the tone in the office. And it was there, a
clear reflection in the wall of windows in front of her.
As her vital statistics updated in real time on her
HUD, she could see the updates slightly delayed on
the screen of his laptop. He had been playing with her
emotions the entire time! He was watching how she
would react, how she would process what he told her,
whether she was a threat to him. . . He could predict
what she was thinking by analyzing all the sensors in
their wearable mesh network: the heart rate sensor,
the perspiration sensor, 3D body positioning, mouth
dryness, blink-rate analysis, muscle tension monitor-
ing. . . He couldn’t read her mind, but his machine
learning software was analyzing what she was most
likely thinking, and it was god damned close. . .

She recklessly shoved a black painted fingernail
into her eye, nearly scratching her retina as she dug
out the wireless-enabled contact. Her teeth clenched
as she tried to stop herself from reacting from the
pain. “Mother fucker!!! Fuck you!”

He laughed casually, motioning again to the chair.
“Please, take a seat.”

“Why should I! You’re fucking insane!”
“Why? Because everyone you know and love wears

these sensors now. Not the cheap knock offs. The real
ones. And we can access them all remotely thanks to
the security architecture that you signed off on. Not
to mention, someone told those people how to break
these security chips, and that report was for internal

use only. Someone will get blamed. We both know it
wasn’t you, but how can you prove it wasn’t?”

She almost spoke the obvious. . .
“Yes, you could tell them all about the so-called

evil we can do here. Blah, fucking blah. You’ll just
sound like another pressured paranoid security engi-
neer that finally snapped, gone schizophrenic, think-
ing trojan horses are communicating to the devices
in your SCIF using sound waves projected through
your own body. You’ll be another fucking psychotic
loser that no one gives a shit about because no one is
strong enough to be comfortable around your Enemy
Of The State, Three Days of the Condor, stereotypi-
cal bullshit.”

“They will listen to me. . . ”
“Listen to a blue haired ex-punk rock wannabe

corporate security fuck? The door is right behind
you. There are lots of people in the building right
now. Want to give it a shot? Go for it.” his smile
was almost razor-thin. “Go ahead. See what they
think.”

Her eyes were blood red from anger, humiliation,
her fingertip, and a feeling of complete loss of control.
As she stood in the center of the room, her foot be-
gan to twitch, tapping out some unheard, emotionally
exhausting, industrial-rock song.

“Now, then. Why don’t you sit down. We have
much to discuss.”

Her body shook as she sat back down in the L3
reproduction. She could feel the noiseless ventilation
system come back on. As her hands touched the cold
metal frame of the chair underneath her, the frigid
air slid like unwanted fingers down the back of her
neck. In silence, she watched the American flag in
the corner wave hypnotically to the oscillation of the
hidden fans, as the fluorescent lights flickered above
the darkened crescent skin under the man’s machi-
nated, inanimate eyes.

The world outside had fully relinquished what was
left of its grip on the evening sun, as if it had given
up its fight against the incessant hum of the digitally
controlled fluorescent lighting. A pulsing, flickering,
buzzing, manufactured light which bullied its way
through these office windows and outside, into the
uncertain San Diego streets. A reflection in the win-
dows shone a familiar pop-up flashing on the man’s
laptop’s screen.

“Would you like to recalibrate?”

54

55

11 A Call for PoC

by Pastor Manul Laphroaig, Proselytizer of Weird Machines

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
Do this: write an email telling our editors how to do reproduce *ONE* clever, technical trick from your

research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German. If
you don’t speak those languages, we’ll dig up a translator.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to make music
that also parses as PSK31, RTTY, or WeFax. Show me how to reverse engineer SoftStrip barcodes. Don’t
tell me that it’s possible; rather, teach me how to do it myself with the absolute minimum of formality and
bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send
this to pastor@phrack org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-
the-middling our submission process.

56

